A non-phosgene route for the synthesis of hexamethylene-1,6-diisocyanate(HDI) was developed via catalytic decomposition of hexamethylene-1,6-dicarbamate(HDC) over Zn–Co bi-metallic supported ZSM-5 catalyst.The cataly...A non-phosgene route for the synthesis of hexamethylene-1,6-diisocyanate(HDI) was developed via catalytic decomposition of hexamethylene-1,6-dicarbamate(HDC) over Zn–Co bi-metallic supported ZSM-5 catalyst.The catalyst was characterized by FTIR and XRD analyses. Three solvents dioctyl sebacate(DOS), dibutyl sebacate(DBS) and 1-butyl-3-methylimidazolium tetrafluoroborate(BMIMBF_4) were investigated and compared; DOS gave better performance. The catalytic performances for thermal decomposition of HDC to HDI using DOS as solvent were then investigated, and the results showed that, under the optimized reaction conditions, i.e.,10 wt%concentration of HDC in DOS, 250 °C temperature, 60 min reaction time, 83.8% yield of HDI had been achieved over Zn–Co/ZSM-5. Decomposition of the intermediate hexamethylene-1-carbamate-6-isocyanate(HMI) over Zn–Co/ZSM-5 in DOS solvent was further studied and the results indicated that yield of HDI from HMI reached to 69.6%(98.6% HDI selectively) at 270 °C, which further increased the yield of the total HDI(HDI_(tol)) to as high as 95.0%. Recycling of catalyst showed that HDI and HMI yield slightly decreased, and by-product yield increased after the catalyst was reused for 4 times. At last possible reaction mechanism was proposed.展开更多
The utilization of CO2 as raw material for chemical synthesis has the potential for substantial economic and green benefits. Thermal decomposition of hexamethylene-1,6-dicarbamate (HDC) is a promising approach for i...The utilization of CO2 as raw material for chemical synthesis has the potential for substantial economic and green benefits. Thermal decomposition of hexamethylene-1,6-dicarbamate (HDC) is a promising approach for indirect utilization of CO2 to produce hexamethylene-1,6-diisocyanate (HDI). In this work, a green route was developed for the synthesis of HD1 by thermal decomposition of HDC over Co3O4/ZSM-5 catalyst, using chlorobenzene as low boiling point solvent. Different metal oxide supported catalysts were prepared by incipient wetness impregnation (IWI), PEG-additive (PEG) and deposition precipitation with ammonia evaporation (DP) methods. Their catalytic performances for the thermal decomposition of HDC were tested. The catalyst screening results showed that Co3O4/ZSM-525 catalysts prepared by different methods showed different performances in the order of Co3O4/ZSM-5 25(PEG) 〉 Co3O4/ZSM-525(IWI) 〉 Co3O4/ZSM-525(DP). The physicochemical properties of Co3O4/ZSM- 52s catalyst were characterized by XRD, FTIR, N2 adsorption-desorption measurements, NH3-TPD and XPS. The superior catalytic performance of Co3O4/ZSM-52S(PEG) catalyst was attributed to its relative surface content of Co3 +, surface lattice oxygen content and total acidity. Under the optimized reaction conditions: 6.5% HDC concentration in chlorobenzene, 1 wt% Co3O4/ZSM-525(PEG) catalyst, 250℃ temperature, 2.5 h time, 800 ml.min 1 nitrogen flow rate and 1.0 MPa pressure, the HDC conversion and HDI yield could reach 100% and 92.8% respectively. The Co3O4/ZSM-525(PEG) catalyst could be facilely separated from the reaction mixture, and reused without degradation in catalytic performance. Furthermore, a possible reaction mechanism was proposed based on the physicochemical properties of the Co3O4/ZSM-5 25 catalysts.展开更多
The commercial vinyl ester resins(VER)was modified by diphenylmethane diisocyanate(MDI)to enhance its toughness,which is called MVER.Hexamethylene diisocyanate(HDI),a common curing agent for polyurethane(PU),was found...The commercial vinyl ester resins(VER)was modified by diphenylmethane diisocyanate(MDI)to enhance its toughness,which is called MVER.Hexamethylene diisocyanate(HDI),a common curing agent for polyurethane(PU),was found to be a reactive agent for MVER and can contribute to the toughness of MVER.Based on present experiment results,the crosslinking mechanism of MVER and HDI system is very similar to that of PU.The FTIR result shows the-NCO of HDI can react with the-OH of MVER.The microstructure of material prepared by MVER and HDI was characterized by NMR,and it was revealed that the unique microstructure leads to the good performances.The different content of HDI has an influence on the microstructure,and the microstructure gradually reduces the toughness and mechanical performances of the MVER cured with increasing concentration of reactive curing agent(HDI).This feature is consistent with a maximum in toughness as a function of the additive(HDI)content,followed by a rapid deterioration in toughness at higher concentrations.The toughness exhibits the maximum at such an HDI concentration(20wt%).Therefore,the special curing agent(HDI)and reactive mode is very important to the microstructure and mechanical properties of material.Furthermore,there should be other reactions which contribute to the curing and microstructure of the material,which needs the further research.展开更多
A set of mono-and bimetallic(Zn-Co) supported ZSM-5 catalysts was first prepared by PEG-additive method. The physicochemical properties of the catalysts were investigated by FTIR, XPS, XRD, N2adsorption-desorption m...A set of mono-and bimetallic(Zn-Co) supported ZSM-5 catalysts was first prepared by PEG-additive method. The physicochemical properties of the catalysts were investigated by FTIR, XPS, XRD, N2adsorption-desorption measurements, SEM, EDS and NH3-TPD techniques. The physicochemical properties showed that the Zn Co2O4 spinel oxide was formed on the ZSM-5 support and provided effectual synergetic effect between Zn and Co species for the bimetallic catalyst. Furthermore, bimetallic supported ZSM-5 catalyst exhibited weak, moderate and strong acidic sites, while the monometallic supported ZSM-5 catalyst showed only weak and moderate or strong acidic sites. Their catalytic performances for thermal decomposition of hexamethylene–1,6–dicarbamate(HDC) to hexamethylene–1,6–diisocyanate(HDI) were then studied. It was found that the bimetallic supported ZSM-5 catalysts,especially Zn-2Co/ZSM-5 catalyst showed excellent catalytic performance due to the good synergetic effect between Co and Zn species, which provided a suitable contribution of acidic sites. HDC conversion of 100% with HDI selectivity of 91.2% and by-products selectivity of 1.3% could be achieved within short reaction time of 2.5 h over Zn-2Co/ZSM-5 catalyst.展开更多
In this study polyrotaxane (PR)-based triblock copolymers were first synthesized via the atom transfer radical polymerization (ATRP) of N-isopropylacrylamide initiated with the self-assembly of a distal 2-bromoiso...In this study polyrotaxane (PR)-based triblock copolymers were first synthesized via the atom transfer radical polymerization (ATRP) of N-isopropylacrylamide initiated with the self-assembly of a distal 2-bromoisobutyryl end-capped Pluronie 17R4 with a varying amount of a-cyclodextrins (a-CDs) in the presence of CuCI/PMDETA at 25 ℃ in aqueous solution. The a-CDs entrapped on the copolymer chain were then linked with hexamethylene diisocyanate to give rise to novel slightly cross-linked polyrotaxanes (SCPRs) in DMF at 45 ℃. The structures of the PR-based triblock copolymers and SCPRs were characterized by 1H NMR, 13C CP/MAS, GPC and TGA analy- ses. The number-average molecular weight of the resulting SCPRs was nearly three and five times of their precursor after linking with a low polydispersity index range of 1.08--1.28. The thermo-responsive transition of both PR-based supramolecular polymers in aqueous solution was demonstrated by turbidity measurements and the self-aggregated morphologies were also evidenced by TEM observations.展开更多
The synthetic reaction of HDI biuret polyisocyanate was monitored by gel permeation chromatography (GPC). The best reaction process was selected according to the percent age of HDI biuret, and the influence of operati...The synthetic reaction of HDI biuret polyisocyanate was monitored by gel permeation chromatography (GPC). The best reaction process was selected according to the percent age of HDI biuret, and the influence of operation conditions on product was also analysed. The results demonstrated that the method of using steam with hexamethylene diisocyanate (HDI) monomer is the best process.Reaction temperature is controlled at 120?℃ and reaction time is controlled at about 7 hours.展开更多
基金Supported by the National Natural Science Foundation of China(21476244,21406245)Transformational Technologies for Clean Energy and Demonstration,Strategic Priority Research Program of the Chinese Academy of Sciences,(XDA 21030600)the Youth Innovation Promotion Association CAS(2016046)
文摘A non-phosgene route for the synthesis of hexamethylene-1,6-diisocyanate(HDI) was developed via catalytic decomposition of hexamethylene-1,6-dicarbamate(HDC) over Zn–Co bi-metallic supported ZSM-5 catalyst.The catalyst was characterized by FTIR and XRD analyses. Three solvents dioctyl sebacate(DOS), dibutyl sebacate(DBS) and 1-butyl-3-methylimidazolium tetrafluoroborate(BMIMBF_4) were investigated and compared; DOS gave better performance. The catalytic performances for thermal decomposition of HDC to HDI using DOS as solvent were then investigated, and the results showed that, under the optimized reaction conditions, i.e.,10 wt%concentration of HDC in DOS, 250 °C temperature, 60 min reaction time, 83.8% yield of HDI had been achieved over Zn–Co/ZSM-5. Decomposition of the intermediate hexamethylene-1-carbamate-6-isocyanate(HMI) over Zn–Co/ZSM-5 in DOS solvent was further studied and the results indicated that yield of HDI from HMI reached to 69.6%(98.6% HDI selectively) at 270 °C, which further increased the yield of the total HDI(HDI_(tol)) to as high as 95.0%. Recycling of catalyst showed that HDI and HMI yield slightly decreased, and by-product yield increased after the catalyst was reused for 4 times. At last possible reaction mechanism was proposed.
基金National Natural Science Foundation of China(21476244 and 21406245)Youth Innovation Promotion Association CAS
文摘The utilization of CO2 as raw material for chemical synthesis has the potential for substantial economic and green benefits. Thermal decomposition of hexamethylene-1,6-dicarbamate (HDC) is a promising approach for indirect utilization of CO2 to produce hexamethylene-1,6-diisocyanate (HDI). In this work, a green route was developed for the synthesis of HD1 by thermal decomposition of HDC over Co3O4/ZSM-5 catalyst, using chlorobenzene as low boiling point solvent. Different metal oxide supported catalysts were prepared by incipient wetness impregnation (IWI), PEG-additive (PEG) and deposition precipitation with ammonia evaporation (DP) methods. Their catalytic performances for the thermal decomposition of HDC were tested. The catalyst screening results showed that Co3O4/ZSM-525 catalysts prepared by different methods showed different performances in the order of Co3O4/ZSM-5 25(PEG) 〉 Co3O4/ZSM-525(IWI) 〉 Co3O4/ZSM-525(DP). The physicochemical properties of Co3O4/ZSM- 52s catalyst were characterized by XRD, FTIR, N2 adsorption-desorption measurements, NH3-TPD and XPS. The superior catalytic performance of Co3O4/ZSM-52S(PEG) catalyst was attributed to its relative surface content of Co3 +, surface lattice oxygen content and total acidity. Under the optimized reaction conditions: 6.5% HDC concentration in chlorobenzene, 1 wt% Co3O4/ZSM-525(PEG) catalyst, 250℃ temperature, 2.5 h time, 800 ml.min 1 nitrogen flow rate and 1.0 MPa pressure, the HDC conversion and HDI yield could reach 100% and 92.8% respectively. The Co3O4/ZSM-525(PEG) catalyst could be facilely separated from the reaction mixture, and reused without degradation in catalytic performance. Furthermore, a possible reaction mechanism was proposed based on the physicochemical properties of the Co3O4/ZSM-5 25 catalysts.
基金Funded by the National Natural Science Foundation of China(51809017)the Basic Scientific Research Project of Public Welfare Research Institutes of the Central Level(CKSF2017060/CL,CKSF2017020/CL,and CKSF2019187/CL)the Financial Science and Technology Project of Xinjiang Corps(2020AB010)。
文摘The commercial vinyl ester resins(VER)was modified by diphenylmethane diisocyanate(MDI)to enhance its toughness,which is called MVER.Hexamethylene diisocyanate(HDI),a common curing agent for polyurethane(PU),was found to be a reactive agent for MVER and can contribute to the toughness of MVER.Based on present experiment results,the crosslinking mechanism of MVER and HDI system is very similar to that of PU.The FTIR result shows the-NCO of HDI can react with the-OH of MVER.The microstructure of material prepared by MVER and HDI was characterized by NMR,and it was revealed that the unique microstructure leads to the good performances.The different content of HDI has an influence on the microstructure,and the microstructure gradually reduces the toughness and mechanical performances of the MVER cured with increasing concentration of reactive curing agent(HDI).This feature is consistent with a maximum in toughness as a function of the additive(HDI)content,followed by a rapid deterioration in toughness at higher concentrations.The toughness exhibits the maximum at such an HDI concentration(20wt%).Therefore,the special curing agent(HDI)and reactive mode is very important to the microstructure and mechanical properties of material.Furthermore,there should be other reactions which contribute to the curing and microstructure of the material,which needs the further research.
基金supported by National Natural Science Foundation of China(Nos.21476244 and 21406245)Youth Innovation Promotion Association CAS
文摘A set of mono-and bimetallic(Zn-Co) supported ZSM-5 catalysts was first prepared by PEG-additive method. The physicochemical properties of the catalysts were investigated by FTIR, XPS, XRD, N2adsorption-desorption measurements, SEM, EDS and NH3-TPD techniques. The physicochemical properties showed that the Zn Co2O4 spinel oxide was formed on the ZSM-5 support and provided effectual synergetic effect between Zn and Co species for the bimetallic catalyst. Furthermore, bimetallic supported ZSM-5 catalyst exhibited weak, moderate and strong acidic sites, while the monometallic supported ZSM-5 catalyst showed only weak and moderate or strong acidic sites. Their catalytic performances for thermal decomposition of hexamethylene–1,6–dicarbamate(HDC) to hexamethylene–1,6–diisocyanate(HDI) were then studied. It was found that the bimetallic supported ZSM-5 catalysts,especially Zn-2Co/ZSM-5 catalyst showed excellent catalytic performance due to the good synergetic effect between Co and Zn species, which provided a suitable contribution of acidic sites. HDC conversion of 100% with HDI selectivity of 91.2% and by-products selectivity of 1.3% could be achieved within short reaction time of 2.5 h over Zn-2Co/ZSM-5 catalyst.
基金This work was supported by the Natural Science Foundation of China (No. 20974015) and the Doctoral Program Foundation of Ministry of Education of China (No. 20091101110029). Wang Jin also thanks the sup- port from YUMIAO foundation of Beijing Institute of Technology.
文摘In this study polyrotaxane (PR)-based triblock copolymers were first synthesized via the atom transfer radical polymerization (ATRP) of N-isopropylacrylamide initiated with the self-assembly of a distal 2-bromoisobutyryl end-capped Pluronie 17R4 with a varying amount of a-cyclodextrins (a-CDs) in the presence of CuCI/PMDETA at 25 ℃ in aqueous solution. The a-CDs entrapped on the copolymer chain were then linked with hexamethylene diisocyanate to give rise to novel slightly cross-linked polyrotaxanes (SCPRs) in DMF at 45 ℃. The structures of the PR-based triblock copolymers and SCPRs were characterized by 1H NMR, 13C CP/MAS, GPC and TGA analy- ses. The number-average molecular weight of the resulting SCPRs was nearly three and five times of their precursor after linking with a low polydispersity index range of 1.08--1.28. The thermo-responsive transition of both PR-based supramolecular polymers in aqueous solution was demonstrated by turbidity measurements and the self-aggregated morphologies were also evidenced by TEM observations.
文摘The synthetic reaction of HDI biuret polyisocyanate was monitored by gel permeation chromatography (GPC). The best reaction process was selected according to the percent age of HDI biuret, and the influence of operation conditions on product was also analysed. The results demonstrated that the method of using steam with hexamethylene diisocyanate (HDI) monomer is the best process.Reaction temperature is controlled at 120?℃ and reaction time is controlled at about 7 hours.