In this study, the effect of doping hexanol into biodiesel which is from neat cashew nut shell biodiesel oil on the emissions and the performance characteristics was studied in a constant speed diesel engine. The main...In this study, the effect of doping hexanol into biodiesel which is from neat cashew nut shell biodiesel oil on the emissions and the performance characteristics was studied in a constant speed diesel engine. The main purpose of this work is to reduce various emissions and also to improve the performance of the diesel engine when fueled with blends of hexanol and neat cashew nut shell biodiesel. Cashew nut shell oil is not edible, and hence it can be used as a viable alternative to diesel.Cashew nut shell biodiesel is prepared by conventional transesterification. Hexanol with 99.2% purity was employed as an oxygenated additive. Experimental studies were conducted by fueling diesel as a baseline and by fueling hexanol and neat cashew nut shell biodiesel mixture. A fuel comprising 10%(by volume) of hexanol and 90%(by volume) neat cashew nut shell biodiesel was referred to as CNSBD900 H100 and fuel comprising 20%(by volume) of hexanol and 80%(by volume)of neat cashew nut shell biodiesel was referred to as CNSBD800 H200. This study also investigated the possibility of using pure biofuel in an unmodified naturally aspirated diesel engine. The outcome of this study showed that adding hexanol at10% and 20%(by volume) to cashew nut shell biodiesel results in a reduction in emissions. In addition, a significant improvement in brake thermal efficiency and reduction in brake-specific fuel consumptions were achieved. Hence, it could be concluded that hexanol could be a viable and promising additive for improving the drawbacks of biodiesel when it was used to fuel an unmodified diesel engine.展开更多
Hexanol is a major compound contributing to the off-flavors(the bean-like odor)of soybean derived soymilk.The most effective way to reduce the off-flavors of soymilk is the screening and utilization of soybean cultiva...Hexanol is a major compound contributing to the off-flavors(the bean-like odor)of soybean derived soymilk.The most effective way to reduce the off-flavors of soymilk is the screening and utilization of soybean cultivars with improved hexanol content.However,no genome-wide genetic analysis for this particular trait has been conducted to date.The objective of the present study was to dissect the genetic basis of hexanol content in soybean seed through genome-wide association analysis(GWAS).A total of 105 soybean accessions were analyzed for hexanol content in a three-year experiments and genotyped by sequencing using the specific locus amplified fragment sequencing(SLAF-seq)approach.A total of 25 724 single nucleotide polymorphisms(SNPs)were obtained with minor allele frequencies(MAF)>5%.GWAS showed that 25 quantitative trait nucleotides(QTNs)were significantly associated with the hexanol concentration in soybean seed.These identified QTNs distributed on different genomic regions of the 15 chromosomes.A total of 91 genes were predicted as candidate genes underlying the seed hexanol level and six candidates were predicted possibly underlying the seed hexanol by gene based association.In this study,GWAS has been proven to be an effective way to dissect the genetic basis of the hexanol concentration in multiple genetic backgrounds.The identified beneficial alleles and candidate genes might be valuable for the improvement of marker-assisted breeding efficiency for low hexanol level and help to explore possible molecular mechanisms underlying hexanol content in soybean seed.展开更多
1‐Butanol is a potential bio‐based fermentation product obtained from cellulosic biomass.As a value‐added chemical,2‐ethyl‐1‐hexanol(2‐EH)can be produced by Guerbet conversion from 1‐butanol.This work reports ...1‐Butanol is a potential bio‐based fermentation product obtained from cellulosic biomass.As a value‐added chemical,2‐ethyl‐1‐hexanol(2‐EH)can be produced by Guerbet conversion from 1‐butanol.This work reports the enhanced catalytic Guerbet reaction of 1‐butanol to 2‐EH by a series of Cp^(*)Ir complexes(Cp^(*):1,2,3,4,5‐pentamethylcyclopenta‐1,3‐diene)coordinated to bipyridine‐type ligands bearing an ortho‐hydroxypyridine group with an electron‐donating group and a Cl−anion.The catalytic activity of the Cp^(*)Ir complex increased by increasing the electron density of the bipyridine ligand when functionalized with the para‐NMe2 and ortho‐hydroxypyridine groups.A record turnover number of 14047 was attained.A mechanistic study indicated that the steric effect of the ethyl group on theα‐C of 2‐ethylhexanal(2‐EHA)and the conjugation effect of C=C–C=O in 2‐ethylhex‐2‐enal(2‐EEA)benefits the high selectivity of 2‐EH from 1‐butanol by inhibiting the cross‐aldol reaction of 2‐EHA and 2‐EEA with butyraldehyde.Nuclear magnetic resonance study revealed the formation of a carbonyl group in the bipyridine‐type ligand via the reaction of the Cp^(*)Ir complex with KOH.展开更多
The syntheses of Keggin and Dawson-structural phospho-tungsto heteropoly compounds and their Peroxo-derivatives(PCWP), and the catalytic performance over this series of catalysts for the selective oxidation of hexanol...The syntheses of Keggin and Dawson-structural phospho-tungsto heteropoly compounds and their Peroxo-derivatives(PCWP), and the catalytic performance over this series of catalysts for the selective oxidation of hexanol to hexylaldehyde are reported. By means of IR, NMR and UV-DRS techniques the catalysts were characterized and a comparison of the structural properties of these catalysts before and after the reaction was made. The correlation between the catalytic performance and the structure of this series of catalysts was discussed as well.展开更多
Phthalates have been used in a wide variety of consumer goods. Their versatility as plasticizers has translated into worldwide use in a vast array of consumer products. These compounds can leach into matrices, such as...Phthalates have been used in a wide variety of consumer goods. Their versatility as plasticizers has translated into worldwide use in a vast array of consumer products. These compounds can leach into matrices, such as food and liquids that can be routed for human exposure. One of the most used phthalates is Diethylhexyl phthalate (DEHP). Diethylhexyl phthalate and its metabolite 2-ethyl-1-hexanol (2-EH) have demonstrated biological effects which merit further evaluation. In this work, we expand on our previous work with DEHP and screen the 2-EH metabolite for different cell death endpoints such as growth inhibition, apoptosis, autophagy, caspase activation, DNA fragmentation, and cell cycle arrest using fluorophores and the NC3000 instrument. Significant results (p 0.05) revealed higher toxicity for the 2-EH metabolite when compared to DEHP. Also, 2-EH presented apoptosis induction with characteristic hallmarks, such as loss of mitochondrial membrane potential, caspase activation, DNA fragmentation and cell cycle arrest at the S phase. In addition, the presence of autophagosome was detected through L3CB protein staining. We conclude that 2-EH presents differences in cell death endpoints that interestingly differ from the DEHP parent compound. Further studies are needed to establish the molecular pathways responsible for the observed effects.展开更多
Temperature dependent phase behavior of Pseudo-ternary Thiourea X-100 + 1-hexanol (1:5 molar ratios)/oil/water systems is reported. The influence of nature of hydrocarbon oil and type of electrolytes (weak as well as ...Temperature dependent phase behavior of Pseudo-ternary Thiourea X-100 + 1-hexanol (1:5 molar ratios)/oil/water systems is reported. The influence of nature of hydrocarbon oil and type of electrolytes (weak as well as strong) has been investigated on the temperature induced phase behavior of the ternary system. At surfactant concentration, Φs = 40%, a “nose shaped” microemulsion region is observed. Below one-phase microemulsion region, Lα phase appears. The presence of NaCl decreases the domain size of 1Φ micellar region whereas oxalic acid first decreases the domain below Φw 18 in the lower boundry of the phase diagram. The critical weight fraction of water, Φwcri decreases in presence of both electrolytes. However, Φwmax increases in presence of oxalic acid and remains constant in presence of NaCl as compared to salt free system. Furthermore, when cyclohexane was replaced by a longer straight chain hydrocarbon, dodecane, the domain of the one-phase microemulsion region is tremendously increased.展开更多
文摘In this study, the effect of doping hexanol into biodiesel which is from neat cashew nut shell biodiesel oil on the emissions and the performance characteristics was studied in a constant speed diesel engine. The main purpose of this work is to reduce various emissions and also to improve the performance of the diesel engine when fueled with blends of hexanol and neat cashew nut shell biodiesel. Cashew nut shell oil is not edible, and hence it can be used as a viable alternative to diesel.Cashew nut shell biodiesel is prepared by conventional transesterification. Hexanol with 99.2% purity was employed as an oxygenated additive. Experimental studies were conducted by fueling diesel as a baseline and by fueling hexanol and neat cashew nut shell biodiesel mixture. A fuel comprising 10%(by volume) of hexanol and 90%(by volume) neat cashew nut shell biodiesel was referred to as CNSBD900 H100 and fuel comprising 20%(by volume) of hexanol and 80%(by volume)of neat cashew nut shell biodiesel was referred to as CNSBD800 H200. This study also investigated the possibility of using pure biofuel in an unmodified naturally aspirated diesel engine. The outcome of this study showed that adding hexanol at10% and 20%(by volume) to cashew nut shell biodiesel results in a reduction in emissions. In addition, a significant improvement in brake thermal efficiency and reduction in brake-specific fuel consumptions were achieved. Hence, it could be concluded that hexanol could be a viable and promising additive for improving the drawbacks of biodiesel when it was used to fuel an unmodified diesel engine.
基金financially supported by the National R&D Program of China (2017YFD0101302)the National Natural Science Foundation of China (31671717 and 31471517)+3 种基金the National Ten-thousand Talents Program, Heilongjiang Provincial Project, China (GX17B002, JC2018007 and C2018016)the Postdoctoral Fund in Heilongjiang Province, China (LBH-Z15017 and LBH-Q17015)the ‘Youth Innovation Talent’ Project of the general undergraduate universities in Heilongjiang Province, China (UNPYSCT-2016145)the ‘Academic Backbone’ Project of Northeast Agricultural University, China (17XG22)
文摘Hexanol is a major compound contributing to the off-flavors(the bean-like odor)of soybean derived soymilk.The most effective way to reduce the off-flavors of soymilk is the screening and utilization of soybean cultivars with improved hexanol content.However,no genome-wide genetic analysis for this particular trait has been conducted to date.The objective of the present study was to dissect the genetic basis of hexanol content in soybean seed through genome-wide association analysis(GWAS).A total of 105 soybean accessions were analyzed for hexanol content in a three-year experiments and genotyped by sequencing using the specific locus amplified fragment sequencing(SLAF-seq)approach.A total of 25 724 single nucleotide polymorphisms(SNPs)were obtained with minor allele frequencies(MAF)>5%.GWAS showed that 25 quantitative trait nucleotides(QTNs)were significantly associated with the hexanol concentration in soybean seed.These identified QTNs distributed on different genomic regions of the 15 chromosomes.A total of 91 genes were predicted as candidate genes underlying the seed hexanol level and six candidates were predicted possibly underlying the seed hexanol by gene based association.In this study,GWAS has been proven to be an effective way to dissect the genetic basis of the hexanol concentration in multiple genetic backgrounds.The identified beneficial alleles and candidate genes might be valuable for the improvement of marker-assisted breeding efficiency for low hexanol level and help to explore possible molecular mechanisms underlying hexanol content in soybean seed.
文摘1‐Butanol is a potential bio‐based fermentation product obtained from cellulosic biomass.As a value‐added chemical,2‐ethyl‐1‐hexanol(2‐EH)can be produced by Guerbet conversion from 1‐butanol.This work reports the enhanced catalytic Guerbet reaction of 1‐butanol to 2‐EH by a series of Cp^(*)Ir complexes(Cp^(*):1,2,3,4,5‐pentamethylcyclopenta‐1,3‐diene)coordinated to bipyridine‐type ligands bearing an ortho‐hydroxypyridine group with an electron‐donating group and a Cl−anion.The catalytic activity of the Cp^(*)Ir complex increased by increasing the electron density of the bipyridine ligand when functionalized with the para‐NMe2 and ortho‐hydroxypyridine groups.A record turnover number of 14047 was attained.A mechanistic study indicated that the steric effect of the ethyl group on theα‐C of 2‐ethylhexanal(2‐EHA)and the conjugation effect of C=C–C=O in 2‐ethylhex‐2‐enal(2‐EEA)benefits the high selectivity of 2‐EH from 1‐butanol by inhibiting the cross‐aldol reaction of 2‐EHA and 2‐EEA with butyraldehyde.Nuclear magnetic resonance study revealed the formation of a carbonyl group in the bipyridine‐type ligand via the reaction of the Cp^(*)Ir complex with KOH.
基金Supported by the National Natural Science Foundation of China.
文摘The syntheses of Keggin and Dawson-structural phospho-tungsto heteropoly compounds and their Peroxo-derivatives(PCWP), and the catalytic performance over this series of catalysts for the selective oxidation of hexanol to hexylaldehyde are reported. By means of IR, NMR and UV-DRS techniques the catalysts were characterized and a comparison of the structural properties of these catalysts before and after the reaction was made. The correlation between the catalytic performance and the structure of this series of catalysts was discussed as well.
文摘Phthalates have been used in a wide variety of consumer goods. Their versatility as plasticizers has translated into worldwide use in a vast array of consumer products. These compounds can leach into matrices, such as food and liquids that can be routed for human exposure. One of the most used phthalates is Diethylhexyl phthalate (DEHP). Diethylhexyl phthalate and its metabolite 2-ethyl-1-hexanol (2-EH) have demonstrated biological effects which merit further evaluation. In this work, we expand on our previous work with DEHP and screen the 2-EH metabolite for different cell death endpoints such as growth inhibition, apoptosis, autophagy, caspase activation, DNA fragmentation, and cell cycle arrest using fluorophores and the NC3000 instrument. Significant results (p 0.05) revealed higher toxicity for the 2-EH metabolite when compared to DEHP. Also, 2-EH presented apoptosis induction with characteristic hallmarks, such as loss of mitochondrial membrane potential, caspase activation, DNA fragmentation and cell cycle arrest at the S phase. In addition, the presence of autophagosome was detected through L3CB protein staining. We conclude that 2-EH presents differences in cell death endpoints that interestingly differ from the DEHP parent compound. Further studies are needed to establish the molecular pathways responsible for the observed effects.
文摘Temperature dependent phase behavior of Pseudo-ternary Thiourea X-100 + 1-hexanol (1:5 molar ratios)/oil/water systems is reported. The influence of nature of hydrocarbon oil and type of electrolytes (weak as well as strong) has been investigated on the temperature induced phase behavior of the ternary system. At surfactant concentration, Φs = 40%, a “nose shaped” microemulsion region is observed. Below one-phase microemulsion region, Lα phase appears. The presence of NaCl decreases the domain size of 1Φ micellar region whereas oxalic acid first decreases the domain below Φw 18 in the lower boundry of the phase diagram. The critical weight fraction of water, Φwcri decreases in presence of both electrolytes. However, Φwmax increases in presence of oxalic acid and remains constant in presence of NaCl as compared to salt free system. Furthermore, when cyclohexane was replaced by a longer straight chain hydrocarbon, dodecane, the domain of the one-phase microemulsion region is tremendously increased.