In order to address the issue that the photocatalytic reduction of hexavalent chromium(Cr(VI))is often limited by the inefficient utilization of electrons in photocatalysts,a quasi-MOF photocatalyst using thiocyanate(...In order to address the issue that the photocatalytic reduction of hexavalent chromium(Cr(VI))is often limited by the inefficient utilization of electrons in photocatalysts,a quasi-MOF photocatalyst using thiocyanate(-SCN)was developed as a modulator to enhance the charge transfer properties of ZIF-L-based photocatalysts.The incorporation of-SCN introduced structural defects,which improved visible light absorption and the reduction ability of photogenerated electrons.-SCN significantly adjusted the electronic properties and established a stable electron release pathway,serving as active sites for reduction.The optimized quasi-MOF demonstrated a Cr(VI)reduction rate of 94.8%in neutral potassium thiocyanate solution under visible light without a hole scavenger.The reaction rate constant is 2.8 times that of the photocatalyst without defect modulation.This study offers a promising strategy for developing highly efficient photocatalysts for environmental remediation.展开更多
Metal-organic frameworks (MOFs)-based composites have been widely applied as photocatalysts because of their synergistic effect between the two individual component.Herein,TiO_(2)@NH_(2)-MIL-125(Ti) nanocomposites whi...Metal-organic frameworks (MOFs)-based composites have been widely applied as photocatalysts because of their synergistic effect between the two individual component.Herein,TiO_(2)@NH_(2)-MIL-125(Ti) nanocomposites which possess unsaturated titanium–oxo clusters,mesoporous structure,and intimate interface were successfully constructed via an in-situ distilled water-etched route.The X-ray photoelectron spectroscopy (XPS) measurements indicated strong electronic interaction between TiO_(2)and NH_(2)-MIL-125(Ti),confirming the formation of TiO 2@NH_(2)-MIL-125(Ti) nanocomposite.Photoelectrochemical and thermodynamics measurements showed that TiO_(2)@NH_(2)-MIL-125(Ti)nanocomposites have improved charge separation efficient and decreased transfer resistance of the carriers within the heterojunction interfaces,which facilitates the photoexcited electrons transfer and reduction of the Cr(VI) species.Therefore,the optimal TiO_(2)@NH_(2)-MIL-125(Ti)nanocomposite demonstrated superior performance compared to NH_(2)-MIL-125(Ti) and NH_(2)-MIL-125(Ti) derived TiO_(2).Based on the free radical trapping experiment and electron paramagnetic resonance (EPR) measurements,a possible type-II scheme was proposed for the enhanced photocatalytic activity over the TiO_(2)@NH_(2)-MIL-125(Ti) nanocomposite.展开更多
Palladium nanoparticles were deposited on the amine-grafted glass fiber mat (GFM-NH2) catalyst support by a conventional impregnation process followed by the borohydride reduction in aqueous solution at room tempera...Palladium nanoparticles were deposited on the amine-grafted glass fiber mat (GFM-NH2) catalyst support by a conventional impregnation process followed by the borohydride reduction in aqueous solution at room temperature to create the designed Pd/GFM-NH2 catalyst. By the use of large size glass fiber mat without nano/mesopores as the catalyst support, the internal mass transfer limitations due to the existence of nano/mesopores on the catalyst support were eliminated and the Pd/GFM-NH2 catalyst could be easily separated from treated water due to the large size of the catalyst support. Batch experiments demonstrate its good catalytic reduction performance of Cr(VI) with formic acid as the reducing agent. It also demonstrated an efficient Cr(VI) removal and stability in a lab-prepared, packed fixed-bed tube reactor for the continuous treatment of Cr(VI)-containing water. Thus, it has a good potential for the catalytic reduction of Cr(VI) in the water treatment practice.展开更多
The capacity of humic acid extracted from organic waste (HAw) to reduce Cr(Ⅵ) was tested at pH 2.5,4 and 6 and compared with coal-derived humic acid (HAc).HAw was more effective than HAc in reducing Cr(Ⅵ).Th...The capacity of humic acid extracted from organic waste (HAw) to reduce Cr(Ⅵ) was tested at pH 2.5,4 and 6 and compared with coal-derived humic acid (HAc).HAw was more effective than HAc in reducing Cr(Ⅵ).The kinetics of Cr(Ⅵ) reductions depended strongly on pH.The calculation of the apparent rate coefficients indicated that HAw was more efficient at reducing Cr(Ⅵ) than HAc,but was also more efficient than HAs from soil and peat.The reduction capability of HAs depends on the type of functional groups (i.e.,thiols and phenols) present,rather than the free radicals.HAw was more efficient at reducing Cr(Ⅵ) than HAc because more reactive phenols were present,i.e.,methoxy-and methyl-phenols.展开更多
基金supported by the Open Project of Yunnan Precious Metals Laboratory Co.,Ltd.,China (Nos.YPML-2023050264,YPML-2023050204)the Natural Science Foundation of Hunan Province,China (No.2022JJ40613)+4 种基金the National Natural Science Foundation of China (No.12074435)the Science and Technology Innovation Program of Hunan Province,China (No.2021RC4001)the Science and Technology Planning Project of Yunnan Province,China (No.202302AH360001)China Postdoctoral Science Foundation (No.2023M743941)the Postdoctoral Fellowship Program (Grade B)of China Postdoctoral Science Foundation (No.GZB20240858)。
文摘In order to address the issue that the photocatalytic reduction of hexavalent chromium(Cr(VI))is often limited by the inefficient utilization of electrons in photocatalysts,a quasi-MOF photocatalyst using thiocyanate(-SCN)was developed as a modulator to enhance the charge transfer properties of ZIF-L-based photocatalysts.The incorporation of-SCN introduced structural defects,which improved visible light absorption and the reduction ability of photogenerated electrons.-SCN significantly adjusted the electronic properties and established a stable electron release pathway,serving as active sites for reduction.The optimized quasi-MOF demonstrated a Cr(VI)reduction rate of 94.8%in neutral potassium thiocyanate solution under visible light without a hole scavenger.The reaction rate constant is 2.8 times that of the photocatalyst without defect modulation.This study offers a promising strategy for developing highly efficient photocatalysts for environmental remediation.
基金financially supported by the National Natural Science Foundation of China (Nos. 61204078, 21671059, and 21877027)the Program for Innovative Research Team (in Science and Technology) of Henan Normal University (No. 2022TD03)+1 种基金the Henan Science and Technology Program (No. 21B150005)the Scientific and Technological Innovation Team of Henan Normal University (No. 2022TD03)。
文摘Metal-organic frameworks (MOFs)-based composites have been widely applied as photocatalysts because of their synergistic effect between the two individual component.Herein,TiO_(2)@NH_(2)-MIL-125(Ti) nanocomposites which possess unsaturated titanium–oxo clusters,mesoporous structure,and intimate interface were successfully constructed via an in-situ distilled water-etched route.The X-ray photoelectron spectroscopy (XPS) measurements indicated strong electronic interaction between TiO_(2)and NH_(2)-MIL-125(Ti),confirming the formation of TiO 2@NH_(2)-MIL-125(Ti) nanocomposite.Photoelectrochemical and thermodynamics measurements showed that TiO_(2)@NH_(2)-MIL-125(Ti)nanocomposites have improved charge separation efficient and decreased transfer resistance of the carriers within the heterojunction interfaces,which facilitates the photoexcited electrons transfer and reduction of the Cr(VI) species.Therefore,the optimal TiO_(2)@NH_(2)-MIL-125(Ti)nanocomposite demonstrated superior performance compared to NH_(2)-MIL-125(Ti) and NH_(2)-MIL-125(Ti) derived TiO_(2).Based on the free radical trapping experiment and electron paramagnetic resonance (EPR) measurements,a possible type-II scheme was proposed for the enhanced photocatalytic activity over the TiO_(2)@NH_(2)-MIL-125(Ti) nanocomposite.
基金supported by the Basic Science Innovation Program of Shenyang National Laboratory for Materials Science(Grant Nos.Y4N56R1161 and Y4N56F2161)the National Natural Science Foundation of China(Grant No.51502305)
文摘Palladium nanoparticles were deposited on the amine-grafted glass fiber mat (GFM-NH2) catalyst support by a conventional impregnation process followed by the borohydride reduction in aqueous solution at room temperature to create the designed Pd/GFM-NH2 catalyst. By the use of large size glass fiber mat without nano/mesopores as the catalyst support, the internal mass transfer limitations due to the existence of nano/mesopores on the catalyst support were eliminated and the Pd/GFM-NH2 catalyst could be easily separated from treated water due to the large size of the catalyst support. Batch experiments demonstrate its good catalytic reduction performance of Cr(VI) with formic acid as the reducing agent. It also demonstrated an efficient Cr(VI) removal and stability in a lab-prepared, packed fixed-bed tube reactor for the continuous treatment of Cr(VI)-containing water. Thus, it has a good potential for the catalytic reduction of Cr(VI) in the water treatment practice.
文摘The capacity of humic acid extracted from organic waste (HAw) to reduce Cr(Ⅵ) was tested at pH 2.5,4 and 6 and compared with coal-derived humic acid (HAc).HAw was more effective than HAc in reducing Cr(Ⅵ).The kinetics of Cr(Ⅵ) reductions depended strongly on pH.The calculation of the apparent rate coefficients indicated that HAw was more efficient at reducing Cr(Ⅵ) than HAc,but was also more efficient than HAs from soil and peat.The reduction capability of HAs depends on the type of functional groups (i.e.,thiols and phenols) present,rather than the free radicals.HAw was more efficient at reducing Cr(Ⅵ) than HAc because more reactive phenols were present,i.e.,methoxy-and methyl-phenols.