Let (L, 〈, V, A) be a complete Heyting algebra. In this article, the linear system Ax = b over a complete Heyting algebra, where classical addition and multiplication operations are replaced by V and A respectively...Let (L, 〈, V, A) be a complete Heyting algebra. In this article, the linear system Ax = b over a complete Heyting algebra, where classical addition and multiplication operations are replaced by V and A respectively, is studied. We obtain: (i) the necessary and sufficient conditions for S(A,b)≠Ф; (ii) the necessary conditions for IS(A,b)| = 1. We also obtain the vector x ∈ Ln and prove that it is the largest element of S(A, b) if S(A, b)≠Ф.展开更多
In this paper,we discuss the related properties of some particular derivations in semihoops and give some characterizations of them.Then,we prove that every Heyting algebra is isomorphic to the algebra of all multipli...In this paper,we discuss the related properties of some particular derivations in semihoops and give some characterizations of them.Then,we prove that every Heyting algebra is isomorphic to the algebra of all multiplicative derivations and show that every Boolean algebra is isomorphic to the algebra of all implicative derivations.Finally,we show that the sets of multiplicative and implicative derivations on bounded regular idempotent semihoops are in oneto-one correspondence.展开更多
基金supported by the NNSF (10471035,10771056) of China
文摘Let (L, 〈, V, A) be a complete Heyting algebra. In this article, the linear system Ax = b over a complete Heyting algebra, where classical addition and multiplication operations are replaced by V and A respectively, is studied. We obtain: (i) the necessary and sufficient conditions for S(A,b)≠Ф; (ii) the necessary conditions for IS(A,b)| = 1. We also obtain the vector x ∈ Ln and prove that it is the largest element of S(A, b) if S(A, b)≠Ф.
基金Supported by the National Natural Science Foundation of China(12271319).
文摘In this paper,we discuss the related properties of some particular derivations in semihoops and give some characterizations of them.Then,we prove that every Heyting algebra is isomorphic to the algebra of all multiplicative derivations and show that every Boolean algebra is isomorphic to the algebra of all implicative derivations.Finally,we show that the sets of multiplicative and implicative derivations on bounded regular idempotent semihoops are in oneto-one correspondence.