Steven Vickers将拓扑的方法与逻辑理论的结果相结合于专著《Topology via Logic》中建立了拓扑系统,并将这一理论应用于计算机理论的研究.本文借助于拓扑系统的思想和方法,以及Frame结构和Heyting代数的共有性质,以Heyting代数为主体...Steven Vickers将拓扑的方法与逻辑理论的结果相结合于专著《Topology via Logic》中建立了拓扑系统,并将这一理论应用于计算机理论的研究.本文借助于拓扑系统的思想和方法,以及Frame结构和Heyting代数的共有性质,以Heyting代数为主体建立了一种新型的代数系统—Heyting系统,建立了Heyting系统之间的恰当的联系方法—H-连续映射;给出了Heyting系统的H-空间化表示形式并对相关性质进行了讨论.本文的工作进一步丰富了Heyting代数的研究方法和拓扑系统的研究内容.展开更多
In this paper,we discuss the related properties of some particular derivations in semihoops and give some characterizations of them.Then,we prove that every Heyting algebra is isomorphic to the algebra of all multipli...In this paper,we discuss the related properties of some particular derivations in semihoops and give some characterizations of them.Then,we prove that every Heyting algebra is isomorphic to the algebra of all multiplicative derivations and show that every Boolean algebra is isomorphic to the algebra of all implicative derivations.Finally,we show that the sets of multiplicative and implicative derivations on bounded regular idempotent semihoops are in oneto-one correspondence.展开更多
文摘Steven Vickers将拓扑的方法与逻辑理论的结果相结合于专著《Topology via Logic》中建立了拓扑系统,并将这一理论应用于计算机理论的研究.本文借助于拓扑系统的思想和方法,以及Frame结构和Heyting代数的共有性质,以Heyting代数为主体建立了一种新型的代数系统—Heyting系统,建立了Heyting系统之间的恰当的联系方法—H-连续映射;给出了Heyting系统的H-空间化表示形式并对相关性质进行了讨论.本文的工作进一步丰富了Heyting代数的研究方法和拓扑系统的研究内容.
基金Supported by the National Natural Science Foundation of China(12271319).
文摘In this paper,we discuss the related properties of some particular derivations in semihoops and give some characterizations of them.Then,we prove that every Heyting algebra is isomorphic to the algebra of all multiplicative derivations and show that every Boolean algebra is isomorphic to the algebra of all implicative derivations.Finally,we show that the sets of multiplicative and implicative derivations on bounded regular idempotent semihoops are in oneto-one correspondence.