The Arabic language comes under the category of Semitic languages with an entirely different sentence structure in terms of Natural Language Processing. In such languages, two different words may have identical spelli...The Arabic language comes under the category of Semitic languages with an entirely different sentence structure in terms of Natural Language Processing. In such languages, two different words may have identical spelling whereas their pronunciations and meanings are totally different. To remove this ambiguity, special marks are put above or below? the spelling characters to determine the correct pronunciation. These marks are called diacritics and the language that uses them is called a diacritized language. This paper presents a system for Arabic language diacritization using Hid- den Markov Models (HMMs). The system employs the renowned HMM Tool Kit? (HTK). Each single diacritic is represented as a separate model. The concatenation of output models is coupled with the input? character sequence to form the fully diacritized text. The performance of the proposed system is assessed using a data corpus that includes more than 24000 sentences.展开更多
Aiming at the problem that the mathematical expressions in unstructured text fields of documents are hard to be extracted automatically, rapidly and effectively, a method based on Hidden Markov Model (HMM) is proposed...Aiming at the problem that the mathematical expressions in unstructured text fields of documents are hard to be extracted automatically, rapidly and effectively, a method based on Hidden Markov Model (HMM) is proposed. Firstly, this method trained the HMM model through employing the symbol combination features of mathematical expressions. Then, some preprocessing works such as removing labels and filtering words were carried out. Finally, the preprocessed text was converted into an observation sequence as the input of the HMM model to determine which is the mathematical expression and extracts it. The experimental results show that the proposed method can effectively extract the mathematical expressions from the text fields of documents, and also has the relatively high accuracy rate and recall rate.展开更多
文摘The Arabic language comes under the category of Semitic languages with an entirely different sentence structure in terms of Natural Language Processing. In such languages, two different words may have identical spelling whereas their pronunciations and meanings are totally different. To remove this ambiguity, special marks are put above or below? the spelling characters to determine the correct pronunciation. These marks are called diacritics and the language that uses them is called a diacritized language. This paper presents a system for Arabic language diacritization using Hid- den Markov Models (HMMs). The system employs the renowned HMM Tool Kit? (HTK). Each single diacritic is represented as a separate model. The concatenation of output models is coupled with the input? character sequence to form the fully diacritized text. The performance of the proposed system is assessed using a data corpus that includes more than 24000 sentences.
文摘Aiming at the problem that the mathematical expressions in unstructured text fields of documents are hard to be extracted automatically, rapidly and effectively, a method based on Hidden Markov Model (HMM) is proposed. Firstly, this method trained the HMM model through employing the symbol combination features of mathematical expressions. Then, some preprocessing works such as removing labels and filtering words were carried out. Finally, the preprocessed text was converted into an observation sequence as the input of the HMM model to determine which is the mathematical expression and extracts it. The experimental results show that the proposed method can effectively extract the mathematical expressions from the text fields of documents, and also has the relatively high accuracy rate and recall rate.
基金Supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No.20070422107 (高等学校博士学科点专项科研基金)the Key Science-Technology Project of Shandong Province of China under Grant No.2007GG10001002 (山东省科技攻关项目)