With the increasingly stringent standards for limiting sulfide content in liquid fuels,oxidative desulfurization(ODS)has become a promising ultra-deep desulfurization process in fuel desulfurization.TS-1 zeolites show...With the increasingly stringent standards for limiting sulfide content in liquid fuels,oxidative desulfurization(ODS)has become a promising ultra-deep desulfurization process in fuel desulfurization.TS-1 zeolites show great potential as catalysts for ODS reactions,due to its remarkable oxidation activity at low temperatures and pressure.However,the inherent microporous structure of conventional TS-1 zeolites restricts the mass transportation and renders the active sites in the microporous space of TS-1 zeolites inaccessible for bulky aromatic organosulfur compounds.Fabrication of hierarchical TS-1 zeolites by incorporating meso-/macropores into microporous TS-1 zeolites is an effective strategy to improve mass transportability.In recent years,abundant efforts have been dedicated to developing synthetic strategies of hierarchical TS-1 zeolite,thereby improving its catalytic performance in the ODS process.This mini-review addresses the synthetic methods of hierarchical TS-1 catalysts and their catalytic performance in the ODS reactions.In addition,some current problems and prospects of synthesis routes for constructing hierarchical TS-1 catalysts have also been revised.We expect this mini-review to shed light on the more efficient preparation strategies of hierarchical TS-1 zeolites for the ODS process.展开更多
Simultaneous achievement of constructing mesopores and eliminating anatase is a long-term pursuit for enhancing the catalytic performance of TS-1.Here,we developed an aromatic compounds-mediated synthesis method to pr...Simultaneous achievement of constructing mesopores and eliminating anatase is a long-term pursuit for enhancing the catalytic performance of TS-1.Here,we developed an aromatic compounds-mediated synthesis method to prepare anatase-free and hierarchical TS-1 for olefin epoxidation.A series of hierarchical TS-1 zeolites were prepared by introducing aromatic compounds containing different functional groups via the crystallization process.The formation of intercrystalline mesopores and insertion of titanium into framework were facilitated at different extent.The synergistic coordination of carboxyl and hydroxyl in aromatic compounds with Ti(OH)4 realizes the uniform distribution of titanium species and eliminates the generation of anatase.Noteworthily,eight machine learning models were trained to reveal the mechanism of additive functional groups and preparation conditions on anatase formation and microstructure optimization.The prediction accuracy of most models can reach more than 80%.Benefiting from the larger mesopore volumes(0.37 cm3⋅g−1)and higher content of framework Ti species,TS-DHBDC-48h samples exhibit a higher catalytic performance than other zeolites,giving 1-hexene conversion of 49.3%and 1,2-epoxyhenane selectivity of 99.9%.The paper provides a facile aromatic compounds-mediated synthesis strategy and promotes the application of machine learning toward the design and optimization of new zeolites.展开更多
The amino-functionalization of TS-1 zeolite followed by immobilization of phosphotungstic acid(HPW)was presented to prepare a strong solid acid catalyst for the synthesis of bio-based tributyl citrate from the esterif...The amino-functionalization of TS-1 zeolite followed by immobilization of phosphotungstic acid(HPW)was presented to prepare a strong solid acid catalyst for the synthesis of bio-based tributyl citrate from the esterification of citric acid and n-butanol.γ-Aminopropyltriethoxysilane(APTES)was first grafted on the TS-1 zeolite via the condensation reactions with surface hydroxyl groups,and subsequently the HPW was immobilized via the reaction between the amino groups and the protons from HPW-forming strong ionic bonding.The Keggin structure of HPW and MFI topology of TS-1 zeolite were well maintained after the modifications.The amino-functionalization generated abundant uniformly distributed active sites on TS-1 for HPW immobilization,which promoted the dispersity,abundance,as well as the stability of the acid sites.The tetrahedrally coordinated framework titanium and non-framework titania behaved as weak Lewis acid sites,and the protons from the immobilized HPW acted as the moderate or strong Brønsted acid sites.An optimized TBC yield of 96.2%(mol)with a conversion of-COOH of 98.1%(mol)was achieved at 150℃for 6 h over the HPW immobilized on amino-functionalized TS-1.The catalyst exhibited good stability after four consecutive reaction runs,where the activity leveled off at still a relatively high level after somewhat deactivation possibly caused by the leaching of a small portion of weakly anchored APTES or HPW.展开更多
Introduced a method of synthesizing hierarchical EU-1 zeolite with organosilanes as additive, and studied the influences of following different kinds of organosilanes on the synthesis of hierarchical EU-1 zeolite: γ-...Introduced a method of synthesizing hierarchical EU-1 zeolite with organosilanes as additive, and studied the influences of following different kinds of organosilanes on the synthesis of hierarchical EU-1 zeolite: γ-glycidoxy propyl trimethoxy silane(GPTMS), N-β-(aminoethyl)-γ-aminopropyl methyl dimethoxyl silane(APAEDMS),and N-(β-aminoethyl)-γ-aminopropyl dimethoxyl(ethyoxyl) silane(TMPED). The hierarchical EU-1 samples were characterized by XRD, SEM, N_2 adsorption, FT-IR and NH_3-TPD to analyze the crystallinity, morphology, surface area, pore size distribution and acidity. The results showed that hierarchical EU-1 zeolites were successfully synthesized; organosilanes have great influence on crystal morphology of EU-1 zeolites; the exterior surface area of hierarchical EU-1 zeolite, which synthesized with organosilanes(APAEDMS) adding into synthesis system, increased by 62.1% and mesopore volume increased by 129.1% compared with conventional EU-1 zeolites, thus can reduce the diffusional restriction markedly in catalytic reaction. The catalytic performance of hierarchical EU-1zeolites were evaluated in m-xylene isomerization on fixed bed reactor. The catalytic data showed that the isomerization activity PX/X of the hierarchical EU-1 zeolites reached around 24.09% in theoretical thermodynamic equilibrium from 23.83%, and the selectivity of C_8 aromatic hydrocarbon increased from 75.16% to 84.87%. The conversion of p-xylene increased from 16.30% to 18.41%.展开更多
The epoxidation of methyl oleate(MO)was conducted in the presence of aqueous H2O2 as the oxidant and hierarchical TS-1(HTS-1)as the catalyst;the catalyst was synthesized using polyquaternium-6 as the mesopore template...The epoxidation of methyl oleate(MO)was conducted in the presence of aqueous H2O2 as the oxidant and hierarchical TS-1(HTS-1)as the catalyst;the catalyst was synthesized using polyquaternium-6 as the mesopore template.The effects of various parameters,i.e.,H2O2/C=C molar ratio,oxidant concentration,amount of the catalyst,reaction temperature,and time,were systematically studied.Furthermore,response surface methodology(RSM)was used to optimize the conditions to maximize the yield of epoxy MO and to evaluate the significance and interplay of the factors affecting the epoxy MO production.The H2O2/C=C molar ratio and catalyst amount were the determining factors for MO epoxidation,wherein the maximum yield of epoxy MO reached 94.9%over HTS-1 under the optimal conditions.展开更多
The exploration of highly efficient catalysts based on nano-sized Ti-rich titanosilicate zeolites with controllable active titanium species is of great importance in zeolite catalytic reactions.Herein,we reported an e...The exploration of highly efficient catalysts based on nano-sized Ti-rich titanosilicate zeolites with controllable active titanium species is of great importance in zeolite catalytic reactions.Herein,we reported an efficient and facile synthesis of nano-sized Ti-rich TS-1(MFI)zeolites by replacing tetrabutyl orthotitanate(TBOT)with tetrabutyl orthotitanate tetramer(TBOT-tetramer)as the titanium source.The introduced TBOT-tetramer slowed down the zeolite crystallization process,and accordingly balanced the rate of incorporating Ti and the crystal growth and inhibited the massive formation of anatase species.Notably,the prepared Ti-rich TS-1 zeolite sample had a Si/Ti as low as 27.6 in contrast to conventional one with a molar ratio of 40.The TBOT-tetramer endowed the titanosilicate zeolites with enriched active titanium species and enlarged external surface area.It also impeded the formation of anatase species,resulting in superior catalytic behavior toward the oxidative desulfurization of dibenzothiophene compared with the conventional TS-1 zeolite counterpart prepared with TBOT.展开更多
Tailoring the Ti coordination states in titanosilicate zeolites to simultaneously improve feedstock conversion and maximize the target product selectivity remains a challenge in the pursuit of high-performance catalys...Tailoring the Ti coordination states in titanosilicate zeolites to simultaneously improve feedstock conversion and maximize the target product selectivity remains a challenge in the pursuit of high-performance catalysts for selective oxidation reactions.Herein,we provide a facile strategy to synthesize hierarchical anatase-free TS-1(MFI-type)zeolites with tetrahedrally coordinated(TiO_(4))and octahedrally coordinated Ti species(TiO_(6)).The TiO_(4)species provide high epoxide selectivity,while the TiO_(6)species afford improved alkene conversion.This strategy is achieved by synergistically using an L-lysine-assisted approach and a two-step crystallization;the two-step crystallization approach prevents the formation of anatase TiO_(2),while L-lysine stabilizes the TiO_(6)species and ensures efficient incorporation of TiO_(6)into the anatase-free TS-1 zeolites.Compared with their conventional counterparts,which only contain TiO_(4)species,the as-prepared TS-1 zeolites(Si/Ti=36.9)result in a higher 1-hexene conversion(33%),higher TON value(153),and comparable epoxide selectivity(95%).This synthetic strategy provides avenues to tailor the amount and distribution of Ti species in titanosilicate zeolites to achieve high catalytic performances in various processes.展开更多
Because of its unique pore structure,good hydrothermal stability and high specific surface area,hierarchical TS-1 zeolite(HTS-1)has become an important catalyst for the deep oxidative desulfurization of fuel oils.In t...Because of its unique pore structure,good hydrothermal stability and high specific surface area,hierarchical TS-1 zeolite(HTS-1)has become an important catalyst for the deep oxidative desulfurization of fuel oils.In this work,HTS-1 has been successfully synthesized by a hydrothermal crystallization method using the C-SiO_(2)composite as both silicon source and mesoporous template,tetrapropylammonium hydroxide as microporous template,and tetrabutylorthotitanate as titanium source.The C-SiO_(2)composite is obtained by mild carbonization of the SiO_(2)/T-40(Tween 40)xerogel,which is prepared by the two step sol-gel method.The reaction conditions for the oxidative desulfurization(ODS)of dibenzothiophene(DBT)and 4,6-dimethyldibenzothiophene(4,6-DMDBT)over HTS-1 are optimized systematically,and the recycling performances of HTS-1 are investigated in detail.After the 15th run,HTS-1 still maintains high DBT conversion(90.6%)and 4,6-DMDBT conversion(86.0%)without deactivation.The samples before and after recycle tests are characterized by XRD,FT-IR,CHN analysis,UV-Vis and SEM techniques.The results indicate that the crystal structure and morphology of regenerated HTS-1 samples are well kept,which accounts for the good structural stability and reusability of HTS-1.In addition,active intermediates for the ODS of bulky organic sulfides over HTS-1,i.e.,Ti-peroxo(Ti-OOtBu)species,are captured by the UV-Vis technique.Finally,a possible reaction mechanism for the ODS process over HTS-1 is proposed.展开更多
The catalytic oxidation processes for cyclohexane/H_2O_2/acetone system overthe TS-1 zeolite was studied. Study results have revealed that the cyclohexane conversion was 27%after the reaction proceeded at 100℃ for 2 ...The catalytic oxidation processes for cyclohexane/H_2O_2/acetone system overthe TS-1 zeolite was studied. Study results have revealed that the cyclohexane conversion was 27%after the reaction proceeded at 100℃ for 2 hours at a cyclohexane/H_2O_2 molar ratio of 0.8. Thecyclohexanol/cyclohexanone molar ratio was 1.3 along with a certain amount of organic acids andesters, the formation of which was closely associated with the oxidation of reaction solvent anddeep oxidation of cyclohexanone and cyclohexanol contained in the reaction products. With respect tothe catalytic oxidation of cyclohexane/H_2O_2 system the selection of appropriate solvent wascritically important.展开更多
In order to investigate the rules on formation of zeolite during crystallization of titanium silicalite zeolite (TS-1) the X-ray diffractometry and Foulier transform infra-red spectrometry were applied to track the pr...In order to investigate the rules on formation of zeolite during crystallization of titanium silicalite zeolite (TS-1) the X-ray diffractometry and Foulier transform infra-red spectrometry were applied to track the process of crystallization of titanium silicalite zeolite. The research results revealed that at the initial stage of crystallization the interactions between silica gel and titania gel in the polymer blend could gradually lead to the formation of tiny crystal nuclei with complicated structure that could slowly grow up to form molecular sieves. Quite different from the conventional zeolites that use the acid sites as the catalytically active centers, the oxidative reactivity of the titanium silicalite zeolite was not proportional to its crystallinity and is associated with the oxidative centers of titanium contained in the zeolite.展开更多
Hierarchical silicalite-1 zeolites were obtained from the direct conversion of a mixture of ground solid raw materials via a steam-assisted crystallization(SAC) method without involvement of any mesoscale template. ...Hierarchical silicalite-1 zeolites were obtained from the direct conversion of a mixture of ground solid raw materials via a steam-assisted crystallization(SAC) method without involvement of any mesoscale template. Only a trace amount of water was necessary during the crystallization, implying that the amount of water can be dramatically reduced, which still offers easy separation and high yields. The simple procedure involved only grinding and heating, which not only saves resources and energy, but also significantly reduces the discharge of eco-friendly synthesis of zeolites for practical applications. Compared to conventional bulk silicalite-1, the nanosized hierarchical zeolites with MFI structure show enhanced removal capabilities for methylene blue owing to their hierarchical porosity.展开更多
基金supported by the National Natural Science Foundation of China(21971082)the Jilin Province Science and Technology Development Plan(20200201096JC and 20190201229JC)+1 种基金the China Postdoctoral Science Foundation(2019T120235 and 2018M640280)for supporting this workthe 111 Project(B17020)。
文摘With the increasingly stringent standards for limiting sulfide content in liquid fuels,oxidative desulfurization(ODS)has become a promising ultra-deep desulfurization process in fuel desulfurization.TS-1 zeolites show great potential as catalysts for ODS reactions,due to its remarkable oxidation activity at low temperatures and pressure.However,the inherent microporous structure of conventional TS-1 zeolites restricts the mass transportation and renders the active sites in the microporous space of TS-1 zeolites inaccessible for bulky aromatic organosulfur compounds.Fabrication of hierarchical TS-1 zeolites by incorporating meso-/macropores into microporous TS-1 zeolites is an effective strategy to improve mass transportability.In recent years,abundant efforts have been dedicated to developing synthetic strategies of hierarchical TS-1 zeolite,thereby improving its catalytic performance in the ODS process.This mini-review addresses the synthetic methods of hierarchical TS-1 catalysts and their catalytic performance in the ODS reactions.In addition,some current problems and prospects of synthesis routes for constructing hierarchical TS-1 catalysts have also been revised.We expect this mini-review to shed light on the more efficient preparation strategies of hierarchical TS-1 zeolites for the ODS process.
基金National Key Research and Development Program of China,Grant/Award Number:2021YFB3500700SINOPEC Research Institute of Petroleum Processing+3 种基金Natural Science Foundation of Guangdong Province of China,Grant/Award Number:2022A1515011918Scientific and Technological Innovation Foundation of Shunde Graduate SchoolUniversity of Science and Technology Beijing,Grant/Award Number:BK20AE003Fundamental Research Funds for the Central Universities,Grant/Award Number:FRF-IDRY-20-004。
文摘Simultaneous achievement of constructing mesopores and eliminating anatase is a long-term pursuit for enhancing the catalytic performance of TS-1.Here,we developed an aromatic compounds-mediated synthesis method to prepare anatase-free and hierarchical TS-1 for olefin epoxidation.A series of hierarchical TS-1 zeolites were prepared by introducing aromatic compounds containing different functional groups via the crystallization process.The formation of intercrystalline mesopores and insertion of titanium into framework were facilitated at different extent.The synergistic coordination of carboxyl and hydroxyl in aromatic compounds with Ti(OH)4 realizes the uniform distribution of titanium species and eliminates the generation of anatase.Noteworthily,eight machine learning models were trained to reveal the mechanism of additive functional groups and preparation conditions on anatase formation and microstructure optimization.The prediction accuracy of most models can reach more than 80%.Benefiting from the larger mesopore volumes(0.37 cm3⋅g−1)and higher content of framework Ti species,TS-DHBDC-48h samples exhibit a higher catalytic performance than other zeolites,giving 1-hexene conversion of 49.3%and 1,2-epoxyhenane selectivity of 99.9%.The paper provides a facile aromatic compounds-mediated synthesis strategy and promotes the application of machine learning toward the design and optimization of new zeolites.
基金supported by the National Natural Science Foundation of China(21978089)the Program of Shanghai Academic/Technology Research Leader(21XD1433000)Key Research and Development Program of Xinjiang Uygur Autonomous Region(2022B01032-1).
文摘The amino-functionalization of TS-1 zeolite followed by immobilization of phosphotungstic acid(HPW)was presented to prepare a strong solid acid catalyst for the synthesis of bio-based tributyl citrate from the esterification of citric acid and n-butanol.γ-Aminopropyltriethoxysilane(APTES)was first grafted on the TS-1 zeolite via the condensation reactions with surface hydroxyl groups,and subsequently the HPW was immobilized via the reaction between the amino groups and the protons from HPW-forming strong ionic bonding.The Keggin structure of HPW and MFI topology of TS-1 zeolite were well maintained after the modifications.The amino-functionalization generated abundant uniformly distributed active sites on TS-1 for HPW immobilization,which promoted the dispersity,abundance,as well as the stability of the acid sites.The tetrahedrally coordinated framework titanium and non-framework titania behaved as weak Lewis acid sites,and the protons from the immobilized HPW acted as the moderate or strong Brønsted acid sites.An optimized TBC yield of 96.2%(mol)with a conversion of-COOH of 98.1%(mol)was achieved at 150℃for 6 h over the HPW immobilized on amino-functionalized TS-1.The catalyst exhibited good stability after four consecutive reaction runs,where the activity leveled off at still a relatively high level after somewhat deactivation possibly caused by the leaching of a small portion of weakly anchored APTES or HPW.
基金Supported by the National Innovation Fund for Small and Medium-sized Technology-based Firms(14C26211400552)
文摘Introduced a method of synthesizing hierarchical EU-1 zeolite with organosilanes as additive, and studied the influences of following different kinds of organosilanes on the synthesis of hierarchical EU-1 zeolite: γ-glycidoxy propyl trimethoxy silane(GPTMS), N-β-(aminoethyl)-γ-aminopropyl methyl dimethoxyl silane(APAEDMS),and N-(β-aminoethyl)-γ-aminopropyl dimethoxyl(ethyoxyl) silane(TMPED). The hierarchical EU-1 samples were characterized by XRD, SEM, N_2 adsorption, FT-IR and NH_3-TPD to analyze the crystallinity, morphology, surface area, pore size distribution and acidity. The results showed that hierarchical EU-1 zeolites were successfully synthesized; organosilanes have great influence on crystal morphology of EU-1 zeolites; the exterior surface area of hierarchical EU-1 zeolite, which synthesized with organosilanes(APAEDMS) adding into synthesis system, increased by 62.1% and mesopore volume increased by 129.1% compared with conventional EU-1 zeolites, thus can reduce the diffusional restriction markedly in catalytic reaction. The catalytic performance of hierarchical EU-1zeolites were evaluated in m-xylene isomerization on fixed bed reactor. The catalytic data showed that the isomerization activity PX/X of the hierarchical EU-1 zeolites reached around 24.09% in theoretical thermodynamic equilibrium from 23.83%, and the selectivity of C_8 aromatic hydrocarbon increased from 75.16% to 84.87%. The conversion of p-xylene increased from 16.30% to 18.41%.
基金supported by the Evonik Industries AGthe Program for New Century Excellent Talents in University(NCET-04-0270)~~
文摘The epoxidation of methyl oleate(MO)was conducted in the presence of aqueous H2O2 as the oxidant and hierarchical TS-1(HTS-1)as the catalyst;the catalyst was synthesized using polyquaternium-6 as the mesopore template.The effects of various parameters,i.e.,H2O2/C=C molar ratio,oxidant concentration,amount of the catalyst,reaction temperature,and time,were systematically studied.Furthermore,response surface methodology(RSM)was used to optimize the conditions to maximize the yield of epoxy MO and to evaluate the significance and interplay of the factors affecting the epoxy MO production.The H2O2/C=C molar ratio and catalyst amount were the determining factors for MO epoxidation,wherein the maximum yield of epoxy MO reached 94.9%over HTS-1 under the optimal conditions.
基金the National Natural Science Foundation of China, China (Grant 21920102005, 22288101, and 21835002)the 111 Project, China (B17020)+2 种基金the European Union through the European Research Council, European Union (grant ERC-AdG-2014-671093, SynCatMatch)the Spanish Government through “Severo Ochoa”, Spain (SEV2016-0683, MINECO) for supporting this workthe financial support from China Scholarship Council, China
文摘The exploration of highly efficient catalysts based on nano-sized Ti-rich titanosilicate zeolites with controllable active titanium species is of great importance in zeolite catalytic reactions.Herein,we reported an efficient and facile synthesis of nano-sized Ti-rich TS-1(MFI)zeolites by replacing tetrabutyl orthotitanate(TBOT)with tetrabutyl orthotitanate tetramer(TBOT-tetramer)as the titanium source.The introduced TBOT-tetramer slowed down the zeolite crystallization process,and accordingly balanced the rate of incorporating Ti and the crystal growth and inhibited the massive formation of anatase species.Notably,the prepared Ti-rich TS-1 zeolite sample had a Si/Ti as low as 27.6 in contrast to conventional one with a molar ratio of 40.The TBOT-tetramer endowed the titanosilicate zeolites with enriched active titanium species and enlarged external surface area.It also impeded the formation of anatase species,resulting in superior catalytic behavior toward the oxidative desulfurization of dibenzothiophene compared with the conventional TS-1 zeolite counterpart prepared with TBOT.
文摘Tailoring the Ti coordination states in titanosilicate zeolites to simultaneously improve feedstock conversion and maximize the target product selectivity remains a challenge in the pursuit of high-performance catalysts for selective oxidation reactions.Herein,we provide a facile strategy to synthesize hierarchical anatase-free TS-1(MFI-type)zeolites with tetrahedrally coordinated(TiO_(4))and octahedrally coordinated Ti species(TiO_(6)).The TiO_(4)species provide high epoxide selectivity,while the TiO_(6)species afford improved alkene conversion.This strategy is achieved by synergistically using an L-lysine-assisted approach and a two-step crystallization;the two-step crystallization approach prevents the formation of anatase TiO_(2),while L-lysine stabilizes the TiO_(6)species and ensures efficient incorporation of TiO_(6)into the anatase-free TS-1 zeolites.Compared with their conventional counterparts,which only contain TiO_(4)species,the as-prepared TS-1 zeolites(Si/Ti=36.9)result in a higher 1-hexene conversion(33%),higher TON value(153),and comparable epoxide selectivity(95%).This synthetic strategy provides avenues to tailor the amount and distribution of Ti species in titanosilicate zeolites to achieve high catalytic performances in various processes.
基金This research was funded by the National Natural Science Foundation of China(21303008)Natural Science Foundation of Hubei Province of China(2012FFB00103).
文摘Because of its unique pore structure,good hydrothermal stability and high specific surface area,hierarchical TS-1 zeolite(HTS-1)has become an important catalyst for the deep oxidative desulfurization of fuel oils.In this work,HTS-1 has been successfully synthesized by a hydrothermal crystallization method using the C-SiO_(2)composite as both silicon source and mesoporous template,tetrapropylammonium hydroxide as microporous template,and tetrabutylorthotitanate as titanium source.The C-SiO_(2)composite is obtained by mild carbonization of the SiO_(2)/T-40(Tween 40)xerogel,which is prepared by the two step sol-gel method.The reaction conditions for the oxidative desulfurization(ODS)of dibenzothiophene(DBT)and 4,6-dimethyldibenzothiophene(4,6-DMDBT)over HTS-1 are optimized systematically,and the recycling performances of HTS-1 are investigated in detail.After the 15th run,HTS-1 still maintains high DBT conversion(90.6%)and 4,6-DMDBT conversion(86.0%)without deactivation.The samples before and after recycle tests are characterized by XRD,FT-IR,CHN analysis,UV-Vis and SEM techniques.The results indicate that the crystal structure and morphology of regenerated HTS-1 samples are well kept,which accounts for the good structural stability and reusability of HTS-1.In addition,active intermediates for the ODS of bulky organic sulfides over HTS-1,i.e.,Ti-peroxo(Ti-OOtBu)species,are captured by the UV-Vis technique.Finally,a possible reaction mechanism for the ODS process over HTS-1 is proposed.
文摘The catalytic oxidation processes for cyclohexane/H_2O_2/acetone system overthe TS-1 zeolite was studied. Study results have revealed that the cyclohexane conversion was 27%after the reaction proceeded at 100℃ for 2 hours at a cyclohexane/H_2O_2 molar ratio of 0.8. Thecyclohexanol/cyclohexanone molar ratio was 1.3 along with a certain amount of organic acids andesters, the formation of which was closely associated with the oxidation of reaction solvent anddeep oxidation of cyclohexanone and cyclohexanol contained in the reaction products. With respect tothe catalytic oxidation of cyclohexane/H_2O_2 system the selection of appropriate solvent wascritically important.
基金supported by the NationalScience Foundation of China(2006CB202508)wewould like to extend our heartfelt thanks to the RIPP’s labo-ratories engaging in XRD and FT-IR analyses for theirenergetical support and warm assistance provided to thisresearch work.
文摘In order to investigate the rules on formation of zeolite during crystallization of titanium silicalite zeolite (TS-1) the X-ray diffractometry and Foulier transform infra-red spectrometry were applied to track the process of crystallization of titanium silicalite zeolite. The research results revealed that at the initial stage of crystallization the interactions between silica gel and titania gel in the polymer blend could gradually lead to the formation of tiny crystal nuclei with complicated structure that could slowly grow up to form molecular sieves. Quite different from the conventional zeolites that use the acid sites as the catalytically active centers, the oxidative reactivity of the titanium silicalite zeolite was not proportional to its crystallinity and is associated with the oxidative centers of titanium contained in the zeolite.
基金Supported by the National Natural Science Foundation of China(Nos.21390394, 21261130584, 91022030, 21771082), the National Basic Research Program of China(Nos.2012CB821700, 2011CB808703), the "111" Project of China(No.B07016), the Award Project of King Abdullah University of Science & Technology(No.CRG-1-2012-LAI-009), the Science and Technology Development Center Project of the Ministry of Education of China(No.20120061130012) and the Science and Technology Research Program of the 13th Five Year Plan of China(No.20120061130012) and the Fund of Education Department of Jilin Province, China(No.2016405).
文摘Hierarchical silicalite-1 zeolites were obtained from the direct conversion of a mixture of ground solid raw materials via a steam-assisted crystallization(SAC) method without involvement of any mesoscale template. Only a trace amount of water was necessary during the crystallization, implying that the amount of water can be dramatically reduced, which still offers easy separation and high yields. The simple procedure involved only grinding and heating, which not only saves resources and energy, but also significantly reduces the discharge of eco-friendly synthesis of zeolites for practical applications. Compared to conventional bulk silicalite-1, the nanosized hierarchical zeolites with MFI structure show enhanced removal capabilities for methylene blue owing to their hierarchical porosity.