Wireless Sensor Networks are a group of sensors with inadequate power sources that are installed in a particular region to gather information from the surroundings.Designing energy-efficient data gathering methods in l...Wireless Sensor Networks are a group of sensors with inadequate power sources that are installed in a particular region to gather information from the surroundings.Designing energy-efficient data gathering methods in large-scale Wireless Sensor Networks(WSN)is one of the most difficult areas of study.As every sensor node has afinite amount of energy.Battery power is the most significant source in the WSN.Clustering is a well-known technique for enhan-cing the power feature in WSN.In the proposed method multi-Swarm optimiza-tion based on a Genetic Algorithm and Adaptive Hierarchical clustering-based routing protocol are used for enhancing the network’s lifespan and routing opti-mization.By using distributed data transmission modification,an adaptive hier-archical clustering-based routing algorithm for power consumption is presented to ensure continuous coverage of the entire area.To begin,a hierarchical cluster-ing-based routing protocol is presented in terms of balancing node energy con-sumption.The Multi-Swarm optimization(MSO)based Genetic Algorithms are proposed to select an efficient Cluster Head(CH).It also improves the network’s longevity and optimizes the routing.As a result of the study’sfindings,the pro-posed MSO-Genetic Algorithm with Hill climbing(GAHC)is effective,as it increases the number of clusters created,average energy expended,lifespan com-putation reduces average packet loss,and end-to-end delay.展开更多
Suppression of the dynamic oscillations of tie-line power exchanges and frequency in the affected interconnected power systems due to loading-condition changes has been assigned as a prominent duty of automatic genera...Suppression of the dynamic oscillations of tie-line power exchanges and frequency in the affected interconnected power systems due to loading-condition changes has been assigned as a prominent duty of automatic generation control(AGC). To alleviate the system oscillation resulting from such load changes, implementation of flexible AC transmission systems(FACTSs) can be considered as one of the practical and effective solutions. In this paper, a thyristor-controlled series compensator(TCSC), which is one series type of the FACTS family, is used to augment the overall dynamic performance of a multi-area multi-source interconnected power system. To this end, we have used a hierarchical adaptive neuro-fuzzy inference system controller-TCSC(HANFISC-TCSC) to abate the two important issues in multi-area interconnected power systems, i.e., low-frequency oscillations and tie-line power exchange deviations. For this purpose, a multi-objective optimization technique is inevitable. Multi-objective particle swarm optimization(MOPSO) has been chosen for this optimization problem, owing to its high performance in untangling non-linear objectives. The efficiency of the suggested HANFISC-TCSC has been precisely evaluated and compared with that of the conventional MOPSO-TCSC in two different multi-area interconnected power systems, i.e., two-area hydro-thermal-diesel and three-area hydro-thermal power systems. The simulation results obtained from both power systems have transparently certified the high performance of HANFISC-TCSC compared to the conventional MOPSO-TCSC.展开更多
A sparse-grid method for solving multi-dimensional backward stochastic differential equations (BSDEs) based on a multi-step time discretization scheme [31] is presented. In the multi-dimensional spatial domain, i.e....A sparse-grid method for solving multi-dimensional backward stochastic differential equations (BSDEs) based on a multi-step time discretization scheme [31] is presented. In the multi-dimensional spatial domain, i.e. the Brownian space, the conditional mathe- matical expectations derived from the original equation are approximated using sparse-grid Gauss-Hermite quadrature rule and (adaptive) hierarchical sparse-grid interpolation. Error estimates are proved for the proposed fully-discrete scheme for multi-dimensional BSDEs with certain types of simplified generator functions. Finally, several numerical examples are provided to illustrate the accuracy and efficiency of our scheme.展开更多
文摘Wireless Sensor Networks are a group of sensors with inadequate power sources that are installed in a particular region to gather information from the surroundings.Designing energy-efficient data gathering methods in large-scale Wireless Sensor Networks(WSN)is one of the most difficult areas of study.As every sensor node has afinite amount of energy.Battery power is the most significant source in the WSN.Clustering is a well-known technique for enhan-cing the power feature in WSN.In the proposed method multi-Swarm optimiza-tion based on a Genetic Algorithm and Adaptive Hierarchical clustering-based routing protocol are used for enhancing the network’s lifespan and routing opti-mization.By using distributed data transmission modification,an adaptive hier-archical clustering-based routing algorithm for power consumption is presented to ensure continuous coverage of the entire area.To begin,a hierarchical cluster-ing-based routing protocol is presented in terms of balancing node energy con-sumption.The Multi-Swarm optimization(MSO)based Genetic Algorithms are proposed to select an efficient Cluster Head(CH).It also improves the network’s longevity and optimizes the routing.As a result of the study’sfindings,the pro-posed MSO-Genetic Algorithm with Hill climbing(GAHC)is effective,as it increases the number of clusters created,average energy expended,lifespan com-putation reduces average packet loss,and end-to-end delay.
文摘Suppression of the dynamic oscillations of tie-line power exchanges and frequency in the affected interconnected power systems due to loading-condition changes has been assigned as a prominent duty of automatic generation control(AGC). To alleviate the system oscillation resulting from such load changes, implementation of flexible AC transmission systems(FACTSs) can be considered as one of the practical and effective solutions. In this paper, a thyristor-controlled series compensator(TCSC), which is one series type of the FACTS family, is used to augment the overall dynamic performance of a multi-area multi-source interconnected power system. To this end, we have used a hierarchical adaptive neuro-fuzzy inference system controller-TCSC(HANFISC-TCSC) to abate the two important issues in multi-area interconnected power systems, i.e., low-frequency oscillations and tie-line power exchange deviations. For this purpose, a multi-objective optimization technique is inevitable. Multi-objective particle swarm optimization(MOPSO) has been chosen for this optimization problem, owing to its high performance in untangling non-linear objectives. The efficiency of the suggested HANFISC-TCSC has been precisely evaluated and compared with that of the conventional MOPSO-TCSC in two different multi-area interconnected power systems, i.e., two-area hydro-thermal-diesel and three-area hydro-thermal power systems. The simulation results obtained from both power systems have transparently certified the high performance of HANFISC-TCSC compared to the conventional MOPSO-TCSC.
基金Acknowledgments. The first author was supported by the US Air Force Office of Scientific Research under grant FA9550-11-1-0149. The first author was also supported by the Advanced Simulation Computing Research (ASCR), Department of Energy, through the Householder Fellowship at ORNL. The ORNL is operated by UT-Battelle, LLC, for the United States Depart-ment of Energy under Contract DE-AC05-00OR22725. The second author was supported by the US Air Force Office of Scientific Research under grant FA9550-11-1-0149. The third author was supported by the Natural Science Foundation of China under grant 11171189. The third author was also supported by the Natural Science Foundation of China under grant 91130003. The thrid author was also supported by Shandong Province Natural Science Foundation under grant ZR2001AZ002.
文摘A sparse-grid method for solving multi-dimensional backward stochastic differential equations (BSDEs) based on a multi-step time discretization scheme [31] is presented. In the multi-dimensional spatial domain, i.e. the Brownian space, the conditional mathe- matical expectations derived from the original equation are approximated using sparse-grid Gauss-Hermite quadrature rule and (adaptive) hierarchical sparse-grid interpolation. Error estimates are proved for the proposed fully-discrete scheme for multi-dimensional BSDEs with certain types of simplified generator functions. Finally, several numerical examples are provided to illustrate the accuracy and efficiency of our scheme.