This paper proposed a new architecture design for nanowire-based quantum-dot-sensitized solar cells to improve the photovoltaic performance. Microstructured rough substrate was used to increase the surface area of the...This paper proposed a new architecture design for nanowire-based quantum-dot-sensitized solar cells to improve the photovoltaic performance. Microstructured rough substrate was used to increase the surface area of the photoanode without influence on charge carrier transport in the system. Compared to conventional devices, the short circuit current density and power conversion efficiency were enhanced by 50%. And the technology can be widely used in the photoelectroehemical (PEC) field, and it can be combined with other hierarchical nanostructures.展开更多
文摘This paper proposed a new architecture design for nanowire-based quantum-dot-sensitized solar cells to improve the photovoltaic performance. Microstructured rough substrate was used to increase the surface area of the photoanode without influence on charge carrier transport in the system. Compared to conventional devices, the short circuit current density and power conversion efficiency were enhanced by 50%. And the technology can be widely used in the photoelectroehemical (PEC) field, and it can be combined with other hierarchical nanostructures.