Through dimension analysis, an almost analytical model for the maximum diffusion induced stress(DIS)and critical temperature(or concentration) difference at which cracks begin to initiate in the diffusion process ...Through dimension analysis, an almost analytical model for the maximum diffusion induced stress(DIS)and critical temperature(or concentration) difference at which cracks begin to initiate in the diffusion process is developed. It interestingly predicts that the spacing of diffusioninduced cracks is constant, independent of the thickness of specimen and the temperature difference. These conclusions are validated by our thermal shock experiments on alumina plates. Furthermore, the proposed model can interpret observed hierarchical crack patterns for high temperature jump cases, and a three-stage relation between the residual strength and the temperature difference. The prediction for crack spacing can guide the biomimetic thermal-shockfailure proof design, in which the hard platelets smaller than the predicted diffusion induced by constant crack-spacing are embedded in a soft matrix, and, therefore, no fracture will happen. This may guide the design of the thermal protection system and the lithium ion battery. Finally we present the maximum normalized DISes for various geometry and boundary conditions by single-variable curves for the stressindependent diffusion process and two-variable contour plots for the stress-dependent diffusion process, which can provideengineers and materialists a simple and easy way to quickly evaluate the reliability of related materials and devices.展开更多
Rotor airfoil design is investigated in this paper. There are many difficulties for this highdimensional multi-objective problem when traditional multi-objective optimization methods are used. Therefore, a multi-layer...Rotor airfoil design is investigated in this paper. There are many difficulties for this highdimensional multi-objective problem when traditional multi-objective optimization methods are used. Therefore, a multi-layer hierarchical constraint method is proposed by coupling principal component analysis(PCA) dimensionality reduction and e-constraint method to translate the original high-dimensional problem into a bi-objective problem. This paper selects the main design objectives by conducting PCA to the preliminary solution of original problem with consideration of the priority of design objectives. According to the e-constraint method, the design model is established by treating the two top-ranking design goals as objective and others as variable constraints. A series of bi-objective Pareto curves will be obtained by changing the variable constraints, and the favorable solution can be obtained by analyzing Pareto curve spectrum. This method is applied to the rotor airfoil design and makes great improvement in aerodynamic performance. It is shown that the method is convenient and efficient, beyond which, it facilitates decision-making of the highdimensional multi-objective engineering problem.展开更多
A new geometric constraint model is described, which is hierarchical and suitable for parametric feature based modeling. In this model, different levels of geometric information are represented to support various stag...A new geometric constraint model is described, which is hierarchical and suitable for parametric feature based modeling. In this model, different levels of geometric information are represented to support various stages of a design process. An efficient approach to parametric featu-re based modeling is also presented, adopting the high level geometric constraint model. The low level geometric model such as B-reps can be derived automatically from the high level geometric constraint model, enabling designers to perform their task of detailed design.展开更多
基金support from the National Natural Science Foundation of China(Grants.11372158,11425208,and 51232004)Tsinghua University Initiative Scientific Research Program(Grant.2011Z02173)
文摘Through dimension analysis, an almost analytical model for the maximum diffusion induced stress(DIS)and critical temperature(or concentration) difference at which cracks begin to initiate in the diffusion process is developed. It interestingly predicts that the spacing of diffusioninduced cracks is constant, independent of the thickness of specimen and the temperature difference. These conclusions are validated by our thermal shock experiments on alumina plates. Furthermore, the proposed model can interpret observed hierarchical crack patterns for high temperature jump cases, and a three-stage relation between the residual strength and the temperature difference. The prediction for crack spacing can guide the biomimetic thermal-shockfailure proof design, in which the hard platelets smaller than the predicted diffusion induced by constant crack-spacing are embedded in a soft matrix, and, therefore, no fracture will happen. This may guide the design of the thermal protection system and the lithium ion battery. Finally we present the maximum normalized DISes for various geometry and boundary conditions by single-variable curves for the stressindependent diffusion process and two-variable contour plots for the stress-dependent diffusion process, which can provideengineers and materialists a simple and easy way to quickly evaluate the reliability of related materials and devices.
基金supported by the National Natural Science Foundation of China (No. 11402288 and 11372254)the National Basic Research Program of China (No. 2014CB744804)
文摘Rotor airfoil design is investigated in this paper. There are many difficulties for this highdimensional multi-objective problem when traditional multi-objective optimization methods are used. Therefore, a multi-layer hierarchical constraint method is proposed by coupling principal component analysis(PCA) dimensionality reduction and e-constraint method to translate the original high-dimensional problem into a bi-objective problem. This paper selects the main design objectives by conducting PCA to the preliminary solution of original problem with consideration of the priority of design objectives. According to the e-constraint method, the design model is established by treating the two top-ranking design goals as objective and others as variable constraints. A series of bi-objective Pareto curves will be obtained by changing the variable constraints, and the favorable solution can be obtained by analyzing Pareto curve spectrum. This method is applied to the rotor airfoil design and makes great improvement in aerodynamic performance. It is shown that the method is convenient and efficient, beyond which, it facilitates decision-making of the highdimensional multi-objective engineering problem.
文摘A new geometric constraint model is described, which is hierarchical and suitable for parametric feature based modeling. In this model, different levels of geometric information are represented to support various stages of a design process. An efficient approach to parametric featu-re based modeling is also presented, adopting the high level geometric constraint model. The low level geometric model such as B-reps can be derived automatically from the high level geometric constraint model, enabling designers to perform their task of detailed design.