The artificial intelligence technique is used to generate a freeway incident response plan. The incident response framework based on rule-based reasoning, case-based reasoning and Bayesian networks reasoning is presen...The artificial intelligence technique is used to generate a freeway incident response plan. The incident response framework based on rule-based reasoning, case-based reasoning and Bayesian networks reasoning is presented. First, a freeway incident management system (RK-IMS) based on rule-based reasoning is developed and applied for incident management in the northern section of the Nanjing-Lianyunguang Freeway. Then, field data from the two-year long operations of the RK-IMS are analyzed. Representations of incident case structures and Bayesian networks(BNs) structures related to incident responses are deduced. Finally, the k-nearest neighbor (k-NN) algorithm is applied to calculate the similarities of the cases. The preplan generation and the control strategy by integrating the k-NN algorithm are also developed. The model is validated by using incident data of the year 2006 from the RK-IMS. The comparison results indicate that the proposed algorithm is accurate and reliable.展开更多
Effective task assignment decisions are paramount for ensuring reliable task execution in multi-UAV systems.However,in the development of feasible plans,challenges stemming from extensive and prolonged task requiremen...Effective task assignment decisions are paramount for ensuring reliable task execution in multi-UAV systems.However,in the development of feasible plans,challenges stemming from extensive and prolonged task requirements are encountered.This paper establishes a decision-making framework for multiple unmanned aerial vehicles(multi-UAV)based on the well-known pigeon-inspired optimization(PIO)algorithm.By addressing the problem from a hierarchical structural perspective,the initial stage involves minimizing the global objective of the flight distance cost after obtaining the entire task distribution and task requirements,utilizing the global optimization capability of the classical PIO algorithm to allocate feasible task spaces for each UAV.In the second stage,building upon the decisions made in the preceding stage,each UAV is abstracted as an agent maximizing its own task execution benefits.An improved version of the PIO algorithm modified with a sine-cosine search mechanism is proposed,enabling the acquisition of the optimal task execution sequence.Simulation experiments involving two different scales of UAVs validate the effectiveness of the proposed methodology.Moreover,dynamic events such as UAV damage and task changes are considered in the simulation to validate the efficacy of the two-stage framework.展开更多
Based on analyzing the influences of a slicing scheme on stair-stepping effect, supporting structure, efficiency and deformation, etc. , analytical hierarchical process (AHP) combining with fuzzy synthetic evaluatio...Based on analyzing the influences of a slicing scheme on stair-stepping effect, supporting structure, efficiency and deformation, etc. , analytical hierarchical process (AHP) combining with fuzzy synthetic evaluation is introduced to make decision in slicing schemes for a processing part. The application in determining the slicing scheme for a computer mouse during prototyping shows that the method increases the rationality during decision- making and improves quality and efficiency for the prototyping part.展开更多
As to oppositional, multi-objective and hierarchical characteristic of air formation to ground attackdefends campaign, and using dynamic space state model of military campaign, this article establishes a principal and...As to oppositional, multi-objective and hierarchical characteristic of air formation to ground attackdefends campaign, and using dynamic space state model of military campaign, this article establishes a principal and subordinate hierarchical interactive decision-making way, the Nash-Stackelberg-Nash model, to solve the problems in military operation, and find out the associated best strategy in hierarchical dynamic decision-making. The simulating result indicate that when applying the model to air formation to ground attack-defends decision-making system, it can solve the problems of two hierarchies, dynamic oppositional decision-making favorably, and reach preferable effect in battle. It proves that the model can provide an effective way for analyzing a battle,展开更多
Decision-making and motion planning are extremely important in autonomous driving to ensure safe driving in a real-world environment.This study proposes an online evolutionary decision-making and motion planning frame...Decision-making and motion planning are extremely important in autonomous driving to ensure safe driving in a real-world environment.This study proposes an online evolutionary decision-making and motion planning framework for autonomous driving based on a hybrid data-and model-driven method.First,a data-driven decision-making module based on deep reinforcement learning(DRL)is developed to pursue a rational driving performance as much as possible.Then,model predictive control(MPC)is employed to execute both longitudinal and lateral motion planning tasks.Multiple constraints are defined according to the vehicle’s physical limit to meet the driving task requirements.Finally,two principles of safety and rationality for the self-evolution of autonomous driving are proposed.A motion envelope is established and embedded into a rational exploration and exploitation scheme,which filters out unreasonable experiences by masking unsafe actions so as to collect high-quality training data for the DRL agent.Experiments with a high-fidelity vehicle model and MATLAB/Simulink co-simulation environment are conducted,and the results show that the proposed online-evolution framework is able to generate safer,more rational,and more efficient driving action in a real-world environment.展开更多
Zeolite catalysts have found extensive applications in the synthesis of various fine chemicals.However,the micropores of zeolites impose diffusion limitations on bulky molecules,greatly reducing the catalytic efficien...Zeolite catalysts have found extensive applications in the synthesis of various fine chemicals.However,the micropores of zeolites impose diffusion limitations on bulky molecules,greatly reducing the catalytic efficiency.Herein,we explore an economic and environmentally friendly method for synthesizing hierarchical NaX zeolite that exhibits improved catalytic performance in the Knoevenagel condensation reaction for producing the useful fine chemical 2-cyano-3-phenylacrylate.The synthesis was achieved via a low-temperature activation of kaolinite and subsequent in-situ transformation strategy without any template or seed.Systematic characterizations reveal that the synthesized NaX zeolite has both intercrystalline and intra-crystalline mesopores,smaller crystal size,and larger external specific surface area compared to commercial NaX zeolite.Detailed mechanism investigations show that the inter-crystalline mesopores are generated by stacking smaller crystals formed from in-situ crystallization of the depolymerized kaolinite,and the intra-crystalline mesopores are inherited from the pores in the depolymerized kaolinite.This synthesis strategy provides an energy-saving and effective way to construct hierarchical zeolites,which may gain wide applications in fine chemical manufacturing.展开更多
Printed micro-supercapacitors(MSCs)have shown broad prospect in flexible and wearable electronics.Most of previous studies focused on printing the electrochemically active materials paying less attention to other key ...Printed micro-supercapacitors(MSCs)have shown broad prospect in flexible and wearable electronics.Most of previous studies focused on printing the electrochemically active materials paying less attention to other key components like current collectors and electrolytes.This study presents an allprinting strategy to fabricate in-plane flexible and substrate-free MSCs with hierarchical encapsulation.This new type of“all-in-one”MSC is constructed by encapsulating the in-plane interdigital current collectors and electrodes within the polyvinyl-alcohol-based hydrogel electrolyte via sequential printing.The bottom electrolyte layer of this fully printed MSCs helps protect the device from the limitation of conventional substrate,showing excellent flexibility.The MSCs maintain a high capacitance retention of 96.84%even in a completely folded state.An optimal electrochemical performance can be achieved by providing ample and shorter transport paths for ions.The MSCs using commercial activated carbon as the active material are endowed with a high specific areal capacitance of 1892.90 mF cm^(-2)at a current density of 0.3 mA cm^(-2),and an outstanding volumetric energy density of 9.20 mWh cm^(-3)at a volumetric power density of 6.89 mW cm^(-3).For demonstration,a thermo-hygrometer is stably powered by five MSCs which are connected in series and wrapped onto a glass rod.This low-cost and versatile all-printing strategy is believed to diversify the application fields of MSCs with high capacitance and excellent flexibility.展开更多
Materials exhibiting high-performance electromagnetic wave absorption have garnered considerable scientific and technological attention,yet encounter significant challenges.Developing new materials and innovative stru...Materials exhibiting high-performance electromagnetic wave absorption have garnered considerable scientific and technological attention,yet encounter significant challenges.Developing new materials and innovative structural design concepts is crucial for expanding the application field of electromagnetic wave absorption.Particularly,hierarchical structure engineering has emerged as a promising approach to enhance the physical and chemical properties of materials,providing immense potential for creating versatile electromagnetic wave absorption materials.Herein,an exceptional multi-dimensional hierarchical structure was meticulously devised,unleashing the full microwave attenuation capabilities through in situ growth,selfreduction,and multi-heterogeneous interface integration.The hierarchical structure features a three-dimensional carbon framework,where magnetic nanoparticles grow in situ on the carbon skeleton,creating a necklace-like structure.Furthermore,magnetic nanosheets assemble within this framework.Enhanced impedance matching was achieved by precisely adjusting component proportions,and intelligent integration of diverse interfaces bolstered dielectric polarization.The obtain Fe_(3)O_(4)-Fe nanoparticles/carbon nanofibers/Al-Fe_(3)O_(4)-Fe nanosheets composites demonstrated outstanding performance with a minimum reflection loss(RLmin)value of−59.3 dB and an effective absorption bandwidth(RL≤−10 dB)extending up to 5.6 GHz at 2.2 mm.These notable accomplishments offer fresh insights into the precision design of high-efficient electromagnetic wave absorption materials.展开更多
While autonomous vehicles are vital components of intelligent transportation systems,ensuring the trustworthiness of decision-making remains a substantial challenge in realizing autonomous driving.Therefore,we present...While autonomous vehicles are vital components of intelligent transportation systems,ensuring the trustworthiness of decision-making remains a substantial challenge in realizing autonomous driving.Therefore,we present a novel robust reinforcement learning approach with safety guarantees to attain trustworthy decision-making for autonomous vehicles.The proposed technique ensures decision trustworthiness in terms of policy robustness and collision safety.Specifically,an adversary model is learned online to simulate the worst-case uncertainty by approximating the optimal adversarial perturbations on the observed states and environmental dynamics.In addition,an adversarial robust actor-critic algorithm is developed to enable the agent to learn robust policies against perturbations in observations and dynamics.Moreover,we devise a safety mask to guarantee the collision safety of the autonomous driving agent during both the training and testing processes using an interpretable knowledge model known as the Responsibility-Sensitive Safety Model.Finally,the proposed approach is evaluated through both simulations and experiments.These results indicate that the autonomous driving agent can make trustworthy decisions and drastically reduce the number of collisions through robust safety policies.展开更多
Due to ever-growing soccer data collection approaches and progressing artificial intelligence(AI) methods, soccer analysis, evaluation, and decision-making have received increasing interest from not only the professio...Due to ever-growing soccer data collection approaches and progressing artificial intelligence(AI) methods, soccer analysis, evaluation, and decision-making have received increasing interest from not only the professional sports analytics realm but also the academic AI research community. AI brings gamechanging approaches for soccer analytics where soccer has been a typical benchmark for AI research. The combination has been an emerging topic. In this paper, soccer match analytics are taken as a complete observation-orientation-decision-action(OODA) loop.In addition, as in AI frameworks such as that for reinforcement learning, interacting with a virtual environment enables an evolving model. Therefore, both soccer analytics in the real world and virtual domains are discussed. With the intersection of the OODA loop and the real-virtual domains, available soccer data, including event and tracking data, and diverse orientation and decisionmaking models for both real-world and virtual soccer matches are comprehensively reviewed. Finally, some promising directions in this interdisciplinary area are pointed out. It is claimed that paradigms for both professional sports analytics and AI research could be combined. Moreover, it is quite promising to bridge the gap between the real and virtual domains for soccer match analysis and decision-making.展开更多
Humans are experiencing the inclusion of artificial agents in their lives,such as unmanned vehicles,service robots,voice assistants,and intelligent medical care.If the artificial agents cannot align with social values...Humans are experiencing the inclusion of artificial agents in their lives,such as unmanned vehicles,service robots,voice assistants,and intelligent medical care.If the artificial agents cannot align with social values or make ethical decisions,they may not meet the expectations of humans.Traditionally,an ethical decision-making framework is constructed by rule-based or statistical approaches.In this paper,we propose an ethical decision-making framework based on incremental ILP(Inductive Logic Programming),which can overcome the brittleness of rule-based approaches and little interpretability of statistical approaches.As the current incremental ILP makes it difficult to solve conflicts,we propose a novel ethical decision-making framework considering conflicts in this paper,which adopts our proposed incremental ILP system.The framework consists of two processes:the learning process and the deduction process.The first process records bottom clauses with their score functions and learns rules guided by the entailment and the score function.The second process obtains an ethical decision based on the rules.In an ethical scenario about chatbots for teenagers’mental health,we verify that our framework can learn ethical rules and make ethical decisions.Besides,we extract incremental ILP from the framework and compare it with the state-of-the-art ILP systems based on ASP(Answer Set Programming)focusing on conflict resolution.The results of comparisons show that our proposed system can generate better-quality rules than most other systems.展开更多
Stroke is a chronic cerebrovascular disease that carries a high risk.Stroke risk assessment is of great significance in preventing,reversing and reducing the spread and the health hazards caused by stroke.Aiming to ob...Stroke is a chronic cerebrovascular disease that carries a high risk.Stroke risk assessment is of great significance in preventing,reversing and reducing the spread and the health hazards caused by stroke.Aiming to objectively predict and identify strokes,this paper proposes a new stroke risk assessment decision-making model named Logistic-AdaBoost(Logistic-AB)based on machine learning.First,the categorical boosting(CatBoost)method is used to perform feature selection for all features of stroke,and 8 main features are selected to form a new index evaluation system to predict the risk of stroke.Second,the borderline synthetic minority oversampling technique(SMOTE)algorithm is applied to transform the unbalanced stroke dataset into a balanced dataset.Finally,the stroke risk assessment decision-makingmodel Logistic-AB is constructed,and the overall prediction performance of this new model is evaluated by comparing it with ten other similar models.The comparison results show that the new model proposed in this paper performs better than the two single algorithms(logistic regression and AdaBoost)on the four indicators of recall,precision,F1 score,and accuracy,and the overall performance of the proposed model is better than that of common machine learning algorithms.The Logistic-AB model presented in this paper can more accurately predict patients’stroke risk.展开更多
Despite the promising potential of transition metal oxides(TMOs)as capacitive deionization(CDI)electrodes,the actual capacity of TMOs electrodes for sodium storage is significantly lower than the theoretical capacity,...Despite the promising potential of transition metal oxides(TMOs)as capacitive deionization(CDI)electrodes,the actual capacity of TMOs electrodes for sodium storage is significantly lower than the theoretical capacity,posing a major obstacle.Herein,we prepared the kinetically favorable Zn_(x)Ni_(1−x)O electrode in situ growth on carbon felt(Zn_(x)Ni_(1−x)O@CF)through constraining the rate of OH^(−)generation in the hydrothermal method.Zn_(x)Ni_(1−x)O@CF exhibited a high-density hierarchical nanosheet structure with three-dimensional open pores,benefitting the ion transport/electron transfer.And tuning the moderate amount of redox-inert Zn-doping can enhance surface electroactive sites,actual activity of redox-active Ni species,and lower adsorption energy,promoting the adsorption kinetic and thermodynamic of the Zn_(0.2)Ni_(0.8)O@CF.Benefitting from the kinetic-thermodynamic facilitation mechanism,Zn_(0.2)Ni_(0.8)O@CF achieved ultrahigh desalination capacity(128.9 mgNaCl g^(-1)),ultra-low energy consumption(0.164 kW h kgNaCl^(-1)),high salt removal rate(1.21 mgNaCl g^(-1) min^(-1)),and good cyclability.The thermodynamic facilitation and Na^(+)intercalation mechanism of Zn_(0.2)Ni_(0.8)O@CF are identified by the density functional theory calculations and electrochemical quartz crystal microbalance with dissipation monitoring,respectively.This research provides new insights into controlling electrochemically favorable morphology and demonstrates that Zn-doping,which is redox-inert,is essential for enhancing the electrochemical performance of CDI electrodes.展开更多
The optimization of the rule base of a fuzzy logic system (FLS) based on evolutionary algorithm has achievednotable results. However, due to the diversity of the deep structure in the hierarchical fuzzy system (HFS) a...The optimization of the rule base of a fuzzy logic system (FLS) based on evolutionary algorithm has achievednotable results. However, due to the diversity of the deep structure in the hierarchical fuzzy system (HFS) and thecorrelation of each sub fuzzy system, the uncertainty of the HFS’s deep structure increases. For the HFS, a largenumber of studies mainly use fixed structures, which cannot be selected automatically. To solve this problem, thispaper proposes a novel approach for constructing the incremental HFS. During system design, the deep structureand the rule base of the HFS are encoded separately. Subsequently, the deep structure is adaptively mutated basedon the fitness value, so as to realize the diversity of deep structures while ensuring reasonable competition amongthe structures. Finally, the differential evolution (DE) is used to optimize the deep structure of HFS and theparameters of antecedent and consequent simultaneously. The simulation results confirm the effectiveness of themodel. Specifically, the root mean square errors in the Laser dataset and Friedman dataset are 0.0395 and 0.0725,respectively with rule counts of rules is 8 and 12, respectively.When compared to alternative methods, the resultsindicate that the proposed method offers improvements in accuracy and rule counts.展开更多
Hierarchical networks are frequently encountered in animal groups,gene networks,and artificial engineering systems such as multiple robots,unmanned vehicle systems,smart grids,wind farm networks,and so forth.The struc...Hierarchical networks are frequently encountered in animal groups,gene networks,and artificial engineering systems such as multiple robots,unmanned vehicle systems,smart grids,wind farm networks,and so forth.The structure of a large directed hierarchical network is often strongly influenced by reverse edges from lower-to higher-level nodes,such as lagging birds’howl in a flock or the opinions of lowerlevel individuals feeding back to higher-level ones in a social group.This study reveals that,for most large-scale real hierarchical networks,the majority of the reverse edges do not affect the synchronization process of the entire network;the synchronization process is influenced only by a small part of these reverse edges along specific paths.More surprisingly,a single effective reverse edge can slow down the synchronization of a huge hierarchical network by over 60%.The effect of such edges depends not on the network size but only on the average in-degree of the involved subnetwork.The overwhelming majority of active reverse edges turn out to have some kind of“bunching”effect on the information flows of hierarchical networks,which slows down synchronization processes.This finding refines the current understanding of the role of reverse edges in many natural,social,and engineering hierarchical networks,which might be beneficial for precisely tuning the synchronization rhythms of these networks.Our study also proposes an effective way to attack a hierarchical network by adding a malicious reverse edge to it and provides some guidance for protecting a network by screening out the specific small proportion of vulnerable nodes.展开更多
Recently, a class of innovative notions on quantum network nonlocality(QNN), called full quantum network nonlocality(FQNN), have been proposed in Phys. Rev. Lett. 128 010403(2022). As the generalization of full networ...Recently, a class of innovative notions on quantum network nonlocality(QNN), called full quantum network nonlocality(FQNN), have been proposed in Phys. Rev. Lett. 128 010403(2022). As the generalization of full network nonlocality(FNN), l-level quantum network nonlocality(l-QNN) was defined in arxiv. 2306.15717 quant-ph(2024). FQNN is a NN that can be generated only from a network with all sources being non-classical. This is beyond the existing standard network nonlocality, which may be generated from a network with only a non-classical source. One of the challenging tasks is to establish corresponding Bell-like inequalities to demonstrate the FQNN or l-QNN. Up to now, the inequality criteria for FQNN and l-QNN have only been established for star and chain networks. In this paper, we devote ourselves to establishing Bell-like inequalities for networks with more complex structures. Note that star and chain networks are special kinds of tree-shaped networks. We first establish the Bell-like inequalities for verifying l-QNN in k-forked tree-shaped networks. Such results generalize the existing inequalities for star and chain networks. Furthermore, we find the Bell-like inequality criteria for l-QNN for general acyclic and cyclic networks. Finally, we discuss the demonstration of l-QNN in the well-known butterfly networks.展开更多
Currently,the hierarchical structure is one of the most effective means to enhance the strength and plasticity of metal materials,since the strain localization can be effectively delayed by the coordination of the uni...Currently,the hierarchical structure is one of the most effective means to enhance the strength and plasticity of metal materials,since the strain localization can be effectively delayed by the coordination of the unique microstructure.In this study,a hierarchical structure of Mg-15Gd-1Zn-0.4Zr(GZ151K)alloys containing grain,twin,and precipitation structural units was prepared by ultrasonic surface rolling process(USRP)and recrystallization annealing(RU).The results showed that the stress gradient generated by USRP formed a twin gradient structure,which will activate the twin-assisted precipitation(TAP)effect and twin-induced recrystallization(TIR)effect during RU.Then,the twin gradient structure transformed into a twin-precipitation gradient structure,and finally into a hierarchical structure with grain-twinprecipitation as the increasement of recrystallization degree.Besides,the dual gradient structure with twin and precipitation structural units had the highest strength and microhardness owing to the precipitation strengthening.However,the hierarchical structure with grain,twin,and precipitation structural units exhibited the most excellent combination of strength and plasticity under grain refinement and precipitation strengthening.展开更多
In clustering algorithms,the selection of neighbors significantly affects the quality of the final clustering results.While various neighbor relationships exist,such as K-nearest neighbors,natural neighbors,and shared...In clustering algorithms,the selection of neighbors significantly affects the quality of the final clustering results.While various neighbor relationships exist,such as K-nearest neighbors,natural neighbors,and shared neighbors,most neighbor relationships can only handle single structural relationships,and the identification accuracy is low for datasets with multiple structures.In life,people’s first instinct for complex things is to divide them into multiple parts to complete.Partitioning the dataset into more sub-graphs is a good idea approach to identifying complex structures.Taking inspiration from this,we propose a novel neighbor method:Shared Natural Neighbors(SNaN).To demonstrate the superiority of this neighbor method,we propose a shared natural neighbors-based hierarchical clustering algorithm for discovering arbitrary-shaped clusters(HC-SNaN).Our algorithm excels in identifying both spherical clusters and manifold clusters.Tested on synthetic datasets and real-world datasets,HC-SNaN demonstrates significant advantages over existing clustering algorithms,particularly when dealing with datasets containing arbitrary shapes.展开更多
Purpose–Material selection,driven by wide and often conflicting objectives,is an important,sometimes difficult problem in material engineering.In this context,multi-criteria decision-making(MCDM)methodologies are eff...Purpose–Material selection,driven by wide and often conflicting objectives,is an important,sometimes difficult problem in material engineering.In this context,multi-criteria decision-making(MCDM)methodologies are effective.An approach of MCDM is needed to cater to criteria of material assortment simultaneously.More firms are now concerned about increasing their productivity using mathematical tools.To occupy a gap in the previous literature this research recommends an integrated MCDM and mathematical Bi-objective model for the selection of material.In addition,by using the Technique for Order Preference by Similarity to Ideal Solution(TOPSIS),the inherent ambiguities of decision-makers in paired evaluations are considered in this research.It goes on to construct a mathematical bi-objective model for determining the best item to purchase.Design/methodology/approach–The entropy perspective is implemented in this paper to evaluate the weight parameters,while the TOPSIS technique is used to determine the best and worst intermediate pipe materials for automotive exhaust system.The intermediate pipes are used to join the components of the exhaust systems.The materials usually used to manufacture intermediate pipe are SUS 436LM,SUS 430,SUS 304,SUS 436L,SUH 409 L,SUS 441 L and SUS 439L.These seven materials are evaluated based on tensile strength(TS),hardness(H),elongation(E),yield strength(YS)and cost(C).A hybrid methodology combining entropy-based criteria weighting,with the TOPSIS for alternative ranking,is pursued to identify the optimal design material for an engineered application in this paper.This study aims to help while filling the information gap in selecting the most suitable material for use in the exhaust intermediate pipes.After that,the authors searched for and considered eight materials and evaluated them on the following five criteria:(1)TS,(2)YS,(3)H,(4)E and(5)C.The first two criteria have been chosen because they can have a lot of influence on the behavior of the exhaust intermediate pipes,on their performance and on the cost.In this structure,the weights of the criteria are calculated objectively through the entropy method in order to have an unbiased assessment.This essentially measures the quantity of information each criterion contribution,indicating the relative importance of these criteria better.Subsequently,the materials were ranked using the TOPSIS method in terms of their relative performance by measuring each material from an ideal solution to determine the best alternative.The results show that SUS 309,SUS 432L and SUS 436 LM are the first three materials that the exhaust intermediate pipe optimal design should consider.Findings–The material matrix of the decision presented in Table 3 was normalized through Equation 5,as shown in Table 5,and the matrix was multiplied with weighting criteriaß_j.The obtained weighted normalized matrix V_ij is presented in Table 6.However,the ideal,worst and best value was ascertained by employing Equation 7.This study is based on the selection of material for the development of intermediate pipe using MCDM,and it involves four basic stages,i.e.method of translation criteria,screening process,method of ranking and search for methods.The selection was done through the TOPSIS method,and the criteria weight was obtained by the entropy method.The result showed that the top three materials are SUS 309,SUS 432L and SUS 436 LM,respectively.For the future work,it is suggested to select more alternatives and criteria.The comparison can also be done by using different MCDM techniques like and Choice Expressing Reality(ELECTRE),Decision-Making Trial and Evaluation Laboratory(DEMATEL)and Preference Ranking Organization Method for Enrichment Evaluation(PROMETHEE).Originality/value–The results provide important conclusions for material selection in this targeted application,verifying the employment of mutual entropy-TOPSIS methodology for a series of difficult engineering decisions in material engineering concepts that combine superior capacity with better performance as well as cost-efficiency in various engineering design.展开更多
The accurate representation of lithium plating and aging phenomena has posed a persistent challenge within the battery research community.Empirical evidence underscores the pivotal role of cell structure in influencin...The accurate representation of lithium plating and aging phenomena has posed a persistent challenge within the battery research community.Empirical evidence underscores the pivotal role of cell structure in influencing aging behaviors and lithium plating within lithium-ion batteries(LIBs).Available lithium-ion plating models often falter in detailed description when integrating the structural intricacies.To address this challenge,this study proposes an innovative hierarchical model that intricately incorporates the layered rolling structure in cells.Notably,our model demonstrates a remarkable capacity to predict the non-uniform distribution of current density and overpotential along the rolling direction of LIBs.Subsequently,we delve into an insightful exploration of the structural factors that influence lithium plating behavior,leveraging the foundation laid by our established model.Furthermore,we easily update the hierarchical model by considering aging factors.This aging model effectively anticipates capacity fatigue and lithium plating tendencies across individual layers of LIBs,all while maintaining computational efficiency.In light of our findings,this model yields novel perspectives on capacity fatigue dynamics and local lithium plating behaviors,offering a substantial advancement compared to existing models.This research paves the way for more efficient and tailored LIB design and operation,with broad implications for energy storage technologies.展开更多
基金The Natural Science Foundation of Jiangsu Province(NoBK2008308)
文摘The artificial intelligence technique is used to generate a freeway incident response plan. The incident response framework based on rule-based reasoning, case-based reasoning and Bayesian networks reasoning is presented. First, a freeway incident management system (RK-IMS) based on rule-based reasoning is developed and applied for incident management in the northern section of the Nanjing-Lianyunguang Freeway. Then, field data from the two-year long operations of the RK-IMS are analyzed. Representations of incident case structures and Bayesian networks(BNs) structures related to incident responses are deduced. Finally, the k-nearest neighbor (k-NN) algorithm is applied to calculate the similarities of the cases. The preplan generation and the control strategy by integrating the k-NN algorithm are also developed. The model is validated by using incident data of the year 2006 from the RK-IMS. The comparison results indicate that the proposed algorithm is accurate and reliable.
文摘Effective task assignment decisions are paramount for ensuring reliable task execution in multi-UAV systems.However,in the development of feasible plans,challenges stemming from extensive and prolonged task requirements are encountered.This paper establishes a decision-making framework for multiple unmanned aerial vehicles(multi-UAV)based on the well-known pigeon-inspired optimization(PIO)algorithm.By addressing the problem from a hierarchical structural perspective,the initial stage involves minimizing the global objective of the flight distance cost after obtaining the entire task distribution and task requirements,utilizing the global optimization capability of the classical PIO algorithm to allocate feasible task spaces for each UAV.In the second stage,building upon the decisions made in the preceding stage,each UAV is abstracted as an agent maximizing its own task execution benefits.An improved version of the PIO algorithm modified with a sine-cosine search mechanism is proposed,enabling the acquisition of the optimal task execution sequence.Simulation experiments involving two different scales of UAVs validate the effectiveness of the proposed methodology.Moreover,dynamic events such as UAV damage and task changes are considered in the simulation to validate the efficacy of the two-stage framework.
基金Supported by the Science and Technology Support Key Project of Jiangsu Province (DE2008365)~~
文摘Based on analyzing the influences of a slicing scheme on stair-stepping effect, supporting structure, efficiency and deformation, etc. , analytical hierarchical process (AHP) combining with fuzzy synthetic evaluation is introduced to make decision in slicing schemes for a processing part. The application in determining the slicing scheme for a computer mouse during prototyping shows that the method increases the rationality during decision- making and improves quality and efficiency for the prototyping part.
基金College Doctor Foundation (20060699026)Aviation Basic Scientific Foundation (05D53021).
文摘As to oppositional, multi-objective and hierarchical characteristic of air formation to ground attackdefends campaign, and using dynamic space state model of military campaign, this article establishes a principal and subordinate hierarchical interactive decision-making way, the Nash-Stackelberg-Nash model, to solve the problems in military operation, and find out the associated best strategy in hierarchical dynamic decision-making. The simulating result indicate that when applying the model to air formation to ground attack-defends decision-making system, it can solve the problems of two hierarchies, dynamic oppositional decision-making favorably, and reach preferable effect in battle. It proves that the model can provide an effective way for analyzing a battle,
基金the financial support of the National Key Research and Development Program of China(2020AAA0108100)the Shanghai Municipal Science and Technology Major Project(2021SHZDZX0100)the Shanghai Gaofeng and Gaoyuan Project for University Academic Program Development for funding。
文摘Decision-making and motion planning are extremely important in autonomous driving to ensure safe driving in a real-world environment.This study proposes an online evolutionary decision-making and motion planning framework for autonomous driving based on a hybrid data-and model-driven method.First,a data-driven decision-making module based on deep reinforcement learning(DRL)is developed to pursue a rational driving performance as much as possible.Then,model predictive control(MPC)is employed to execute both longitudinal and lateral motion planning tasks.Multiple constraints are defined according to the vehicle’s physical limit to meet the driving task requirements.Finally,two principles of safety and rationality for the self-evolution of autonomous driving are proposed.A motion envelope is established and embedded into a rational exploration and exploitation scheme,which filters out unreasonable experiences by masking unsafe actions so as to collect high-quality training data for the DRL agent.Experiments with a high-fidelity vehicle model and MATLAB/Simulink co-simulation environment are conducted,and the results show that the proposed online-evolution framework is able to generate safer,more rational,and more efficient driving action in a real-world environment.
基金The financial supports from the National Natural Science Foundation of China (22178059, 22208054 and 22072019)Natural Science Foundation of Fujian Province, China (2020J01513)+1 种基金Sinochem Quanzhou Energy Technology Co., Ltd. (ZHQZKJ-19-F-ZS0076)Qingyuan Innovation Laboratory (00121002)
文摘Zeolite catalysts have found extensive applications in the synthesis of various fine chemicals.However,the micropores of zeolites impose diffusion limitations on bulky molecules,greatly reducing the catalytic efficiency.Herein,we explore an economic and environmentally friendly method for synthesizing hierarchical NaX zeolite that exhibits improved catalytic performance in the Knoevenagel condensation reaction for producing the useful fine chemical 2-cyano-3-phenylacrylate.The synthesis was achieved via a low-temperature activation of kaolinite and subsequent in-situ transformation strategy without any template or seed.Systematic characterizations reveal that the synthesized NaX zeolite has both intercrystalline and intra-crystalline mesopores,smaller crystal size,and larger external specific surface area compared to commercial NaX zeolite.Detailed mechanism investigations show that the inter-crystalline mesopores are generated by stacking smaller crystals formed from in-situ crystallization of the depolymerized kaolinite,and the intra-crystalline mesopores are inherited from the pores in the depolymerized kaolinite.This synthesis strategy provides an energy-saving and effective way to construct hierarchical zeolites,which may gain wide applications in fine chemical manufacturing.
基金financially supported by National Natural Science Foundation of China(Nos.U22A20193 and 51975218)Fundamental Research Funds for the Central Universities(No.2022ZYGXZR101)
文摘Printed micro-supercapacitors(MSCs)have shown broad prospect in flexible and wearable electronics.Most of previous studies focused on printing the electrochemically active materials paying less attention to other key components like current collectors and electrolytes.This study presents an allprinting strategy to fabricate in-plane flexible and substrate-free MSCs with hierarchical encapsulation.This new type of“all-in-one”MSC is constructed by encapsulating the in-plane interdigital current collectors and electrodes within the polyvinyl-alcohol-based hydrogel electrolyte via sequential printing.The bottom electrolyte layer of this fully printed MSCs helps protect the device from the limitation of conventional substrate,showing excellent flexibility.The MSCs maintain a high capacitance retention of 96.84%even in a completely folded state.An optimal electrochemical performance can be achieved by providing ample and shorter transport paths for ions.The MSCs using commercial activated carbon as the active material are endowed with a high specific areal capacitance of 1892.90 mF cm^(-2)at a current density of 0.3 mA cm^(-2),and an outstanding volumetric energy density of 9.20 mWh cm^(-3)at a volumetric power density of 6.89 mW cm^(-3).For demonstration,a thermo-hygrometer is stably powered by five MSCs which are connected in series and wrapped onto a glass rod.This low-cost and versatile all-printing strategy is believed to diversify the application fields of MSCs with high capacitance and excellent flexibility.
基金funded by the National Natural Science Foundation of China(No.51873004).
文摘Materials exhibiting high-performance electromagnetic wave absorption have garnered considerable scientific and technological attention,yet encounter significant challenges.Developing new materials and innovative structural design concepts is crucial for expanding the application field of electromagnetic wave absorption.Particularly,hierarchical structure engineering has emerged as a promising approach to enhance the physical and chemical properties of materials,providing immense potential for creating versatile electromagnetic wave absorption materials.Herein,an exceptional multi-dimensional hierarchical structure was meticulously devised,unleashing the full microwave attenuation capabilities through in situ growth,selfreduction,and multi-heterogeneous interface integration.The hierarchical structure features a three-dimensional carbon framework,where magnetic nanoparticles grow in situ on the carbon skeleton,creating a necklace-like structure.Furthermore,magnetic nanosheets assemble within this framework.Enhanced impedance matching was achieved by precisely adjusting component proportions,and intelligent integration of diverse interfaces bolstered dielectric polarization.The obtain Fe_(3)O_(4)-Fe nanoparticles/carbon nanofibers/Al-Fe_(3)O_(4)-Fe nanosheets composites demonstrated outstanding performance with a minimum reflection loss(RLmin)value of−59.3 dB and an effective absorption bandwidth(RL≤−10 dB)extending up to 5.6 GHz at 2.2 mm.These notable accomplishments offer fresh insights into the precision design of high-efficient electromagnetic wave absorption materials.
基金supported in part by the Start-Up Grant-Nanyang Assistant Professorship Grant of Nanyang Technological Universitythe Agency for Science,Technology and Research(A*STAR)under Advanced Manufacturing and Engineering(AME)Young Individual Research under Grant(A2084c0156)+2 种基金the MTC Individual Research Grant(M22K2c0079)the ANR-NRF Joint Grant(NRF2021-NRF-ANR003 HM Science)the Ministry of Education(MOE)under the Tier 2 Grant(MOE-T2EP50222-0002)。
文摘While autonomous vehicles are vital components of intelligent transportation systems,ensuring the trustworthiness of decision-making remains a substantial challenge in realizing autonomous driving.Therefore,we present a novel robust reinforcement learning approach with safety guarantees to attain trustworthy decision-making for autonomous vehicles.The proposed technique ensures decision trustworthiness in terms of policy robustness and collision safety.Specifically,an adversary model is learned online to simulate the worst-case uncertainty by approximating the optimal adversarial perturbations on the observed states and environmental dynamics.In addition,an adversarial robust actor-critic algorithm is developed to enable the agent to learn robust policies against perturbations in observations and dynamics.Moreover,we devise a safety mask to guarantee the collision safety of the autonomous driving agent during both the training and testing processes using an interpretable knowledge model known as the Responsibility-Sensitive Safety Model.Finally,the proposed approach is evaluated through both simulations and experiments.These results indicate that the autonomous driving agent can make trustworthy decisions and drastically reduce the number of collisions through robust safety policies.
基金supported by the National Key Research,Development Program of China (2020AAA0103404)the Beijing Nova Program (20220484077)the National Natural Science Foundation of China (62073323)。
文摘Due to ever-growing soccer data collection approaches and progressing artificial intelligence(AI) methods, soccer analysis, evaluation, and decision-making have received increasing interest from not only the professional sports analytics realm but also the academic AI research community. AI brings gamechanging approaches for soccer analytics where soccer has been a typical benchmark for AI research. The combination has been an emerging topic. In this paper, soccer match analytics are taken as a complete observation-orientation-decision-action(OODA) loop.In addition, as in AI frameworks such as that for reinforcement learning, interacting with a virtual environment enables an evolving model. Therefore, both soccer analytics in the real world and virtual domains are discussed. With the intersection of the OODA loop and the real-virtual domains, available soccer data, including event and tracking data, and diverse orientation and decisionmaking models for both real-world and virtual soccer matches are comprehensively reviewed. Finally, some promising directions in this interdisciplinary area are pointed out. It is claimed that paradigms for both professional sports analytics and AI research could be combined. Moreover, it is quite promising to bridge the gap between the real and virtual domains for soccer match analysis and decision-making.
基金This work was funded by the National Natural Science Foundation of China Nos.U22A2099,61966009,62006057the Graduate Innovation Program No.YCSW2022286.
文摘Humans are experiencing the inclusion of artificial agents in their lives,such as unmanned vehicles,service robots,voice assistants,and intelligent medical care.If the artificial agents cannot align with social values or make ethical decisions,they may not meet the expectations of humans.Traditionally,an ethical decision-making framework is constructed by rule-based or statistical approaches.In this paper,we propose an ethical decision-making framework based on incremental ILP(Inductive Logic Programming),which can overcome the brittleness of rule-based approaches and little interpretability of statistical approaches.As the current incremental ILP makes it difficult to solve conflicts,we propose a novel ethical decision-making framework considering conflicts in this paper,which adopts our proposed incremental ILP system.The framework consists of two processes:the learning process and the deduction process.The first process records bottom clauses with their score functions and learns rules guided by the entailment and the score function.The second process obtains an ethical decision based on the rules.In an ethical scenario about chatbots for teenagers’mental health,we verify that our framework can learn ethical rules and make ethical decisions.Besides,we extract incremental ILP from the framework and compare it with the state-of-the-art ILP systems based on ASP(Answer Set Programming)focusing on conflict resolution.The results of comparisons show that our proposed system can generate better-quality rules than most other systems.
基金supported by the National Natural Science Foundation of China (No.72071150).
文摘Stroke is a chronic cerebrovascular disease that carries a high risk.Stroke risk assessment is of great significance in preventing,reversing and reducing the spread and the health hazards caused by stroke.Aiming to objectively predict and identify strokes,this paper proposes a new stroke risk assessment decision-making model named Logistic-AdaBoost(Logistic-AB)based on machine learning.First,the categorical boosting(CatBoost)method is used to perform feature selection for all features of stroke,and 8 main features are selected to form a new index evaluation system to predict the risk of stroke.Second,the borderline synthetic minority oversampling technique(SMOTE)algorithm is applied to transform the unbalanced stroke dataset into a balanced dataset.Finally,the stroke risk assessment decision-makingmodel Logistic-AB is constructed,and the overall prediction performance of this new model is evaluated by comparing it with ten other similar models.The comparison results show that the new model proposed in this paper performs better than the two single algorithms(logistic regression and AdaBoost)on the four indicators of recall,precision,F1 score,and accuracy,and the overall performance of the proposed model is better than that of common machine learning algorithms.The Logistic-AB model presented in this paper can more accurately predict patients’stroke risk.
基金supported by The National Natural Science Foundation of China(22276137,52170087)the Fundamental Research Funds for the Central Universities(XJEDU2023Z009).
文摘Despite the promising potential of transition metal oxides(TMOs)as capacitive deionization(CDI)electrodes,the actual capacity of TMOs electrodes for sodium storage is significantly lower than the theoretical capacity,posing a major obstacle.Herein,we prepared the kinetically favorable Zn_(x)Ni_(1−x)O electrode in situ growth on carbon felt(Zn_(x)Ni_(1−x)O@CF)through constraining the rate of OH^(−)generation in the hydrothermal method.Zn_(x)Ni_(1−x)O@CF exhibited a high-density hierarchical nanosheet structure with three-dimensional open pores,benefitting the ion transport/electron transfer.And tuning the moderate amount of redox-inert Zn-doping can enhance surface electroactive sites,actual activity of redox-active Ni species,and lower adsorption energy,promoting the adsorption kinetic and thermodynamic of the Zn_(0.2)Ni_(0.8)O@CF.Benefitting from the kinetic-thermodynamic facilitation mechanism,Zn_(0.2)Ni_(0.8)O@CF achieved ultrahigh desalination capacity(128.9 mgNaCl g^(-1)),ultra-low energy consumption(0.164 kW h kgNaCl^(-1)),high salt removal rate(1.21 mgNaCl g^(-1) min^(-1)),and good cyclability.The thermodynamic facilitation and Na^(+)intercalation mechanism of Zn_(0.2)Ni_(0.8)O@CF are identified by the density functional theory calculations and electrochemical quartz crystal microbalance with dissipation monitoring,respectively.This research provides new insights into controlling electrochemically favorable morphology and demonstrates that Zn-doping,which is redox-inert,is essential for enhancing the electrochemical performance of CDI electrodes.
基金the Sichuan Science and Technology Program(2021ZYD0016).
文摘The optimization of the rule base of a fuzzy logic system (FLS) based on evolutionary algorithm has achievednotable results. However, due to the diversity of the deep structure in the hierarchical fuzzy system (HFS) and thecorrelation of each sub fuzzy system, the uncertainty of the HFS’s deep structure increases. For the HFS, a largenumber of studies mainly use fixed structures, which cannot be selected automatically. To solve this problem, thispaper proposes a novel approach for constructing the incremental HFS. During system design, the deep structureand the rule base of the HFS are encoded separately. Subsequently, the deep structure is adaptively mutated basedon the fitness value, so as to realize the diversity of deep structures while ensuring reasonable competition amongthe structures. Finally, the differential evolution (DE) is used to optimize the deep structure of HFS and theparameters of antecedent and consequent simultaneously. The simulation results confirm the effectiveness of themodel. Specifically, the root mean square errors in the Laser dataset and Friedman dataset are 0.0395 and 0.0725,respectively with rule counts of rules is 8 and 12, respectively.When compared to alternative methods, the resultsindicate that the proposed method offers improvements in accuracy and rule counts.
基金supported in part by the National Natural Science Foundation of China(62225306,U2141235,52188102,and 62003145)the National Key Research and Development Program of China(2022ZD0119601)+1 种基金Guangdong Basic and Applied Research Foundation(2022B1515120069)the Science and Technology Project of State Grid Corporation of China(5100-202199557A-0-5-ZN).
文摘Hierarchical networks are frequently encountered in animal groups,gene networks,and artificial engineering systems such as multiple robots,unmanned vehicle systems,smart grids,wind farm networks,and so forth.The structure of a large directed hierarchical network is often strongly influenced by reverse edges from lower-to higher-level nodes,such as lagging birds’howl in a flock or the opinions of lowerlevel individuals feeding back to higher-level ones in a social group.This study reveals that,for most large-scale real hierarchical networks,the majority of the reverse edges do not affect the synchronization process of the entire network;the synchronization process is influenced only by a small part of these reverse edges along specific paths.More surprisingly,a single effective reverse edge can slow down the synchronization of a huge hierarchical network by over 60%.The effect of such edges depends not on the network size but only on the average in-degree of the involved subnetwork.The overwhelming majority of active reverse edges turn out to have some kind of“bunching”effect on the information flows of hierarchical networks,which slows down synchronization processes.This finding refines the current understanding of the role of reverse edges in many natural,social,and engineering hierarchical networks,which might be beneficial for precisely tuning the synchronization rhythms of these networks.Our study also proposes an effective way to attack a hierarchical network by adding a malicious reverse edge to it and provides some guidance for protecting a network by screening out the specific small proportion of vulnerable nodes.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12271394 and 12071336)the Key Research and Development Program of Shanxi Province(Grant No.202102010101004)。
文摘Recently, a class of innovative notions on quantum network nonlocality(QNN), called full quantum network nonlocality(FQNN), have been proposed in Phys. Rev. Lett. 128 010403(2022). As the generalization of full network nonlocality(FNN), l-level quantum network nonlocality(l-QNN) was defined in arxiv. 2306.15717 quant-ph(2024). FQNN is a NN that can be generated only from a network with all sources being non-classical. This is beyond the existing standard network nonlocality, which may be generated from a network with only a non-classical source. One of the challenging tasks is to establish corresponding Bell-like inequalities to demonstrate the FQNN or l-QNN. Up to now, the inequality criteria for FQNN and l-QNN have only been established for star and chain networks. In this paper, we devote ourselves to establishing Bell-like inequalities for networks with more complex structures. Note that star and chain networks are special kinds of tree-shaped networks. We first establish the Bell-like inequalities for verifying l-QNN in k-forked tree-shaped networks. Such results generalize the existing inequalities for star and chain networks. Furthermore, we find the Bell-like inequality criteria for l-QNN for general acyclic and cyclic networks. Finally, we discuss the demonstration of l-QNN in the well-known butterfly networks.
基金supported by the National Key Research and Development Program of China(No.2021YFB3501001)the National Natural Science Foundation of China(Nos.52061028,and 52061039)+1 种基金the Natural Science Foundation of Jiangxi Province(No.20212BAB204049)the Interdisciplinary Innovation Fund of Nanchang University(IIFNCU),China(No.9166–27060003-ZD05).
文摘Currently,the hierarchical structure is one of the most effective means to enhance the strength and plasticity of metal materials,since the strain localization can be effectively delayed by the coordination of the unique microstructure.In this study,a hierarchical structure of Mg-15Gd-1Zn-0.4Zr(GZ151K)alloys containing grain,twin,and precipitation structural units was prepared by ultrasonic surface rolling process(USRP)and recrystallization annealing(RU).The results showed that the stress gradient generated by USRP formed a twin gradient structure,which will activate the twin-assisted precipitation(TAP)effect and twin-induced recrystallization(TIR)effect during RU.Then,the twin gradient structure transformed into a twin-precipitation gradient structure,and finally into a hierarchical structure with grain-twinprecipitation as the increasement of recrystallization degree.Besides,the dual gradient structure with twin and precipitation structural units had the highest strength and microhardness owing to the precipitation strengthening.However,the hierarchical structure with grain,twin,and precipitation structural units exhibited the most excellent combination of strength and plasticity under grain refinement and precipitation strengthening.
基金This work was supported by Science and Technology Research Program of Chongqing Municipal Education Commission(KJZD-M202300502,KJQN201800539).
文摘In clustering algorithms,the selection of neighbors significantly affects the quality of the final clustering results.While various neighbor relationships exist,such as K-nearest neighbors,natural neighbors,and shared neighbors,most neighbor relationships can only handle single structural relationships,and the identification accuracy is low for datasets with multiple structures.In life,people’s first instinct for complex things is to divide them into multiple parts to complete.Partitioning the dataset into more sub-graphs is a good idea approach to identifying complex structures.Taking inspiration from this,we propose a novel neighbor method:Shared Natural Neighbors(SNaN).To demonstrate the superiority of this neighbor method,we propose a shared natural neighbors-based hierarchical clustering algorithm for discovering arbitrary-shaped clusters(HC-SNaN).Our algorithm excels in identifying both spherical clusters and manifold clusters.Tested on synthetic datasets and real-world datasets,HC-SNaN demonstrates significant advantages over existing clustering algorithms,particularly when dealing with datasets containing arbitrary shapes.
文摘Purpose–Material selection,driven by wide and often conflicting objectives,is an important,sometimes difficult problem in material engineering.In this context,multi-criteria decision-making(MCDM)methodologies are effective.An approach of MCDM is needed to cater to criteria of material assortment simultaneously.More firms are now concerned about increasing their productivity using mathematical tools.To occupy a gap in the previous literature this research recommends an integrated MCDM and mathematical Bi-objective model for the selection of material.In addition,by using the Technique for Order Preference by Similarity to Ideal Solution(TOPSIS),the inherent ambiguities of decision-makers in paired evaluations are considered in this research.It goes on to construct a mathematical bi-objective model for determining the best item to purchase.Design/methodology/approach–The entropy perspective is implemented in this paper to evaluate the weight parameters,while the TOPSIS technique is used to determine the best and worst intermediate pipe materials for automotive exhaust system.The intermediate pipes are used to join the components of the exhaust systems.The materials usually used to manufacture intermediate pipe are SUS 436LM,SUS 430,SUS 304,SUS 436L,SUH 409 L,SUS 441 L and SUS 439L.These seven materials are evaluated based on tensile strength(TS),hardness(H),elongation(E),yield strength(YS)and cost(C).A hybrid methodology combining entropy-based criteria weighting,with the TOPSIS for alternative ranking,is pursued to identify the optimal design material for an engineered application in this paper.This study aims to help while filling the information gap in selecting the most suitable material for use in the exhaust intermediate pipes.After that,the authors searched for and considered eight materials and evaluated them on the following five criteria:(1)TS,(2)YS,(3)H,(4)E and(5)C.The first two criteria have been chosen because they can have a lot of influence on the behavior of the exhaust intermediate pipes,on their performance and on the cost.In this structure,the weights of the criteria are calculated objectively through the entropy method in order to have an unbiased assessment.This essentially measures the quantity of information each criterion contribution,indicating the relative importance of these criteria better.Subsequently,the materials were ranked using the TOPSIS method in terms of their relative performance by measuring each material from an ideal solution to determine the best alternative.The results show that SUS 309,SUS 432L and SUS 436 LM are the first three materials that the exhaust intermediate pipe optimal design should consider.Findings–The material matrix of the decision presented in Table 3 was normalized through Equation 5,as shown in Table 5,and the matrix was multiplied with weighting criteriaß_j.The obtained weighted normalized matrix V_ij is presented in Table 6.However,the ideal,worst and best value was ascertained by employing Equation 7.This study is based on the selection of material for the development of intermediate pipe using MCDM,and it involves four basic stages,i.e.method of translation criteria,screening process,method of ranking and search for methods.The selection was done through the TOPSIS method,and the criteria weight was obtained by the entropy method.The result showed that the top three materials are SUS 309,SUS 432L and SUS 436 LM,respectively.For the future work,it is suggested to select more alternatives and criteria.The comparison can also be done by using different MCDM techniques like and Choice Expressing Reality(ELECTRE),Decision-Making Trial and Evaluation Laboratory(DEMATEL)and Preference Ranking Organization Method for Enrichment Evaluation(PROMETHEE).Originality/value–The results provide important conclusions for material selection in this targeted application,verifying the employment of mutual entropy-TOPSIS methodology for a series of difficult engineering decisions in material engineering concepts that combine superior capacity with better performance as well as cost-efficiency in various engineering design.
基金the financial support from The National Key Research and Development Program of China(2022YFB3305402)The National Natural Science Foundation of China(12272072)+1 种基金The Key Project of Chongqing Technology Innovation and Application Development(CSTB2022TIAD-KPX0037)Research Project of the State Key Laboratory of Intel igent Vehicle Safety Technology(NVHSKL-202207)
文摘The accurate representation of lithium plating and aging phenomena has posed a persistent challenge within the battery research community.Empirical evidence underscores the pivotal role of cell structure in influencing aging behaviors and lithium plating within lithium-ion batteries(LIBs).Available lithium-ion plating models often falter in detailed description when integrating the structural intricacies.To address this challenge,this study proposes an innovative hierarchical model that intricately incorporates the layered rolling structure in cells.Notably,our model demonstrates a remarkable capacity to predict the non-uniform distribution of current density and overpotential along the rolling direction of LIBs.Subsequently,we delve into an insightful exploration of the structural factors that influence lithium plating behavior,leveraging the foundation laid by our established model.Furthermore,we easily update the hierarchical model by considering aging factors.This aging model effectively anticipates capacity fatigue and lithium plating tendencies across individual layers of LIBs,all while maintaining computational efficiency.In light of our findings,this model yields novel perspectives on capacity fatigue dynamics and local lithium plating behaviors,offering a substantial advancement compared to existing models.This research paves the way for more efficient and tailored LIB design and operation,with broad implications for energy storage technologies.