Urchin-like LaPO4 hollow spheres were successfully synthesized by a facile solution route using citric acid (CA) as a structure-directing agent. The size of the three-dimensional (3D) hollow spheres was tuned by c...Urchin-like LaPO4 hollow spheres were successfully synthesized by a facile solution route using citric acid (CA) as a structure-directing agent. The size of the three-dimensional (3D) hollow spheres was tuned by changing the concentration of CA. The formation mechanism of the 3D LaPO4 hollow spheres was revealed by studying the time-dependent morphology evolution process. Importantly, compared with monodispersed one-dimensional (1D) LaPO4 nanorods, the 3D LaPO4 hollow spheres self-assembled from nanorods showed a 6.8-fold enhancement in photocatalytic activity for CO2 reduction, which is attributed to the synergistic effect of their hierarchical hollow structure, higher light-harvesting capacity, and faster electron transfer. Our findings provide not only a simple, facile method for the synthesis of hierarchical hollow micro/nanoarchitectures but also an efficient route for enhancing the photocatalytic performance.展开更多
Limited lithium resources have promoted the exploration of new battery technologies.Among them,potassium-ion batteries are considered as promising alternatives.At present,commercial graphite and other carbon-based mat...Limited lithium resources have promoted the exploration of new battery technologies.Among them,potassium-ion batteries are considered as promising alternatives.At present,commercial graphite and other carbon-based materials have shown good prospects as anodes for potassium-ion batteries.However,the volume expansion and structural collapse caused by periodic K+insertion/extraction have severely restricted further development and application of potassium-ion batteries.A hollow biomass carbon ball(NOP-PB)ternarily doped with N,O,and P was synthesized and used as the negative electrode of a potassium-ion battery.X-ray photoelectron spectroscopy,Fourier‐transform infrared spectroscopy,and transmission electron microscopy confirmed that the hollow biomass carbon spheres were successfully doped with N,O,and P.Further analysis proved that N,O,and P ternary doping expands the interlayer distance of the graphite surface and introduces more defect sites.DFT calculations simultaneously proved that the K adsorption energy of the doped structure is greatly improved.The solid hollow hierarchical porous structure buffers the volume expansion of the potassium insertion process,maintains the original structure after a long cycle and promotes the transfer of potassium ions and electrons.Therefore,the NOP‐PB negative electrode shows extremely enhanced electrochemical performance,including high specific capacity,excellent long‐term stability,and good rate stability.展开更多
文摘Urchin-like LaPO4 hollow spheres were successfully synthesized by a facile solution route using citric acid (CA) as a structure-directing agent. The size of the three-dimensional (3D) hollow spheres was tuned by changing the concentration of CA. The formation mechanism of the 3D LaPO4 hollow spheres was revealed by studying the time-dependent morphology evolution process. Importantly, compared with monodispersed one-dimensional (1D) LaPO4 nanorods, the 3D LaPO4 hollow spheres self-assembled from nanorods showed a 6.8-fold enhancement in photocatalytic activity for CO2 reduction, which is attributed to the synergistic effect of their hierarchical hollow structure, higher light-harvesting capacity, and faster electron transfer. Our findings provide not only a simple, facile method for the synthesis of hierarchical hollow micro/nanoarchitectures but also an efficient route for enhancing the photocatalytic performance.
基金The authors are grateful for support from the National Natural Science Foundation of China(No.21671160).
文摘Limited lithium resources have promoted the exploration of new battery technologies.Among them,potassium-ion batteries are considered as promising alternatives.At present,commercial graphite and other carbon-based materials have shown good prospects as anodes for potassium-ion batteries.However,the volume expansion and structural collapse caused by periodic K+insertion/extraction have severely restricted further development and application of potassium-ion batteries.A hollow biomass carbon ball(NOP-PB)ternarily doped with N,O,and P was synthesized and used as the negative electrode of a potassium-ion battery.X-ray photoelectron spectroscopy,Fourier‐transform infrared spectroscopy,and transmission electron microscopy confirmed that the hollow biomass carbon spheres were successfully doped with N,O,and P.Further analysis proved that N,O,and P ternary doping expands the interlayer distance of the graphite surface and introduces more defect sites.DFT calculations simultaneously proved that the K adsorption energy of the doped structure is greatly improved.The solid hollow hierarchical porous structure buffers the volume expansion of the potassium insertion process,maintains the original structure after a long cycle and promotes the transfer of potassium ions and electrons.Therefore,the NOP‐PB negative electrode shows extremely enhanced electrochemical performance,including high specific capacity,excellent long‐term stability,and good rate stability.