期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A Processor Performance Prediction Method Based on Interpretable Hierarchical Belief Rule Base and Sensitivity Analysis
1
作者 Chen Wei-wei He Wei +3 位作者 Zhu Hai-long Zhou Guo-hui Mu Quan-qi Han Peng 《Computers, Materials & Continua》 SCIE EI 2023年第3期6119-6143,共25页
The prediction of processor performance has important referencesignificance for future processors. Both the accuracy and rationality of theprediction results are required. The hierarchical belief rule base (HBRB)can i... The prediction of processor performance has important referencesignificance for future processors. Both the accuracy and rationality of theprediction results are required. The hierarchical belief rule base (HBRB)can initially provide a solution to low prediction accuracy. However, theinterpretability of the model and the traceability of the results still warrantfurther investigation. Therefore, a processor performance prediction methodbased on interpretable hierarchical belief rule base (HBRB-I) and globalsensitivity analysis (GSA) is proposed. The method can yield more reliableprediction results. Evidence reasoning (ER) is firstly used to evaluate thehistorical data of the processor, followed by a performance prediction modelwith interpretability constraints that is constructed based on HBRB-I. Then,the whale optimization algorithm (WOA) is used to optimize the parameters.Furthermore, to test the interpretability of the performance predictionprocess, GSA is used to analyze the relationship between the input and thepredicted output indicators. Finally, based on the UCI database processordataset, the effectiveness and superiority of the method are verified. Accordingto our experiments, our prediction method generates more reliable andaccurate estimations than traditional models. 展开更多
关键词 hierarchical belief rule base(HBRB) evidence reasoning(ER) INTERPRETABILITY global sensitivity analysis(GSA) whale optimization algorithm(WOA)
下载PDF
Mining Hierarchical Decision Rules from Hybrid Data with Categorical and Continuous Valued Attributes
2
作者 MIAO Duo-qian QIAN Jin +1 位作者 LI Wen ZHANG Ze-hua 《浙江海洋学院学报(自然科学版)》 CAS 2010年第5期420-427,共8页
Decision rules mining is an important issue in machine learning and data mining.However,most proposed algorithms mine categorical data at single level,and these rules are not easily understandable and really useful fo... Decision rules mining is an important issue in machine learning and data mining.However,most proposed algorithms mine categorical data at single level,and these rules are not easily understandable and really useful for users.Thus,a new approach to hierarchical decision rules mining is provided in this paper,in which similarity direction measure is introduced to deal with hybrid data.This approach can mine hierarchical decision rules by adjusting similarity measure parameters and the level of concept hierarchy trees. 展开更多
关键词 Similarity relation Attribute reduction hierarchical decision rules Hybrid data
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部