In an automatic bobbin management system that simultaneously detects bobbin color and residual yarn,a composite texture segmentation and recognition operation based on an odd partial Gabor filter and multi-color space...In an automatic bobbin management system that simultaneously detects bobbin color and residual yarn,a composite texture segmentation and recognition operation based on an odd partial Gabor filter and multi-color space hierarchical clustering are proposed.Firstly,the parameter-optimized odd partial Gabor filter is used to distinguish bobbin and yarn texture,to explore Garbor parameters for yarn bobbins,and to accurately discriminate frequency characteristics of yarns and texture.Secondly,multi-color clustering segmentation using color spaces such as red,green,blue(RGB)and CIELUV(LUV)solves the problems of over-segmentation and segmentation errors,which are caused by the difficulty of accurately representing the complex and variable color information of yarns in a single-color space and the low contrast between the target and background.Finally,the segmented bobbin is combined with the odd partial Gabor’s edge recognition operator to further distinguish bobbin texture from yarn texture and locate the position and size of the residual yarn.Experimental results show that the method is robust in identifying complex texture,damaged and dyed bobbins,and multi-color yarns.Residual yarn identification can distinguish texture features and residual yarns well and it can be transferred to the detection and differentiation of complex texture,which is significantly better than traditional methods.展开更多
This research proposes a method called enhanced collaborative andgeometric multi-kernel learning (E-CGMKL) that can enhance the CGMKLalgorithm which deals with multi-class classification problems with non-lineardata d...This research proposes a method called enhanced collaborative andgeometric multi-kernel learning (E-CGMKL) that can enhance the CGMKLalgorithm which deals with multi-class classification problems with non-lineardata distributions. CGMKL combines multiple kernel learning with softmaxfunction using the framework of multi empirical kernel learning (MEKL) inwhich empirical kernel mapping (EKM) provides explicit feature constructionin the high dimensional kernel space. CGMKL ensures the consistent outputof samples across kernel spaces and minimizes the within-class distance tohighlight geometric features of multiple classes. However, the kernels constructed by CGMKL do not have any explicit relationship among them andtry to construct high dimensional feature representations independently fromeach other. This could be disadvantageous for learning on datasets with complex hidden structures. To overcome this limitation, E-CGMKL constructskernel spaces from hidden layers of trained deep neural networks (DNN).Due to the nature of the DNN architecture, these kernel spaces not onlyprovide multiple feature representations but also inherit the compositionalhierarchy of the hidden layers, which might be beneficial for enhancing thepredictive performance of the CGMKL algorithm on complex data withnatural hierarchical structures, for example, image data. Furthermore, ourproposed scheme handles image data by constructing kernel spaces from aconvolutional neural network (CNN). Considering the effectiveness of CNNarchitecture on image data, these kernel spaces provide a major advantageover the CGMKL algorithm which does not exploit the CNN architecture forconstructing kernel spaces from image data. Additionally, outputs of hiddenlayers directly provide features for kernel spaces and unlike CGMKL, do notrequire an approximate MEKL framework. E-CGMKL combines the consistency and geometry preserving aspects of CGMKL with the compositionalhierarchy of kernel spaces extracted from DNN hidden layers to enhance the predictive performance of CGMKL significantly. The experimental results onvarious data sets demonstrate the superior performance of the E-CGMKLalgorithm compared to other competing methods including the benchmarkCGMKL.展开更多
Through dimension analysis, an almost analytical model for the maximum diffusion induced stress(DIS)and critical temperature(or concentration) difference at which cracks begin to initiate in the diffusion process ...Through dimension analysis, an almost analytical model for the maximum diffusion induced stress(DIS)and critical temperature(or concentration) difference at which cracks begin to initiate in the diffusion process is developed. It interestingly predicts that the spacing of diffusioninduced cracks is constant, independent of the thickness of specimen and the temperature difference. These conclusions are validated by our thermal shock experiments on alumina plates. Furthermore, the proposed model can interpret observed hierarchical crack patterns for high temperature jump cases, and a three-stage relation between the residual strength and the temperature difference. The prediction for crack spacing can guide the biomimetic thermal-shockfailure proof design, in which the hard platelets smaller than the predicted diffusion induced by constant crack-spacing are embedded in a soft matrix, and, therefore, no fracture will happen. This may guide the design of the thermal protection system and the lithium ion battery. Finally we present the maximum normalized DISes for various geometry and boundary conditions by single-variable curves for the stressindependent diffusion process and two-variable contour plots for the stress-dependent diffusion process, which can provideengineers and materialists a simple and easy way to quickly evaluate the reliability of related materials and devices.展开更多
In this article we consider a sequence of hierarchical space model of inverse problems.The underlying function is estimated from indirect observations over a variety of error distributions including those that are hea...In this article we consider a sequence of hierarchical space model of inverse problems.The underlying function is estimated from indirect observations over a variety of error distributions including those that are heavy-tailed and may not even possess variances or means.The main contribution of this paper is that we establish some oracle inequalities for the inverse problems by using quantile coupling technique that gives a tight bound for the quantile coupling between an arbitrary sample p-quantile and a normal variable,and an automatic selection principle for the nonrandom filters.This leads to the data-driven choice of weights.We also give an algorithm for its implementation.The quantile coupling inequality developed in this paper is of independent interest,because it includes the median coupling inequality in literature as a special case.展开更多
In this paper, we target a similarity search among data supply chains, which plays an essential role in optimizing the supply chain and extending its value. This problem is very challenging for application-oriented da...In this paper, we target a similarity search among data supply chains, which plays an essential role in optimizing the supply chain and extending its value. This problem is very challenging for application-oriented data supply chains because the high complexity of the data supply chain makes the computation of similarity extremely complex and inefficient. In this paper, we propose a feature space representation model based on key points,which can extract the key features from the subsequences of the original data supply chain and simplify it into a feature vector form. Then, we formulate the similarity computation of the subsequences based on the multiscale features. Further, we propose an improved hierarchical clustering algorithm for a similarity search over the data supply chains. The main idea is to separate the subsequences into disjoint groups such that each group meets one specific clustering criteria; thus, the cluster containing the query object is the similarity search result. The experimental results show that the proposed approach is both effective and efficient for data supply chain retrieval.展开更多
基金Key Research and Development Plan of Shaanxi Province,China(No.2023-YBGY-330)。
文摘In an automatic bobbin management system that simultaneously detects bobbin color and residual yarn,a composite texture segmentation and recognition operation based on an odd partial Gabor filter and multi-color space hierarchical clustering are proposed.Firstly,the parameter-optimized odd partial Gabor filter is used to distinguish bobbin and yarn texture,to explore Garbor parameters for yarn bobbins,and to accurately discriminate frequency characteristics of yarns and texture.Secondly,multi-color clustering segmentation using color spaces such as red,green,blue(RGB)and CIELUV(LUV)solves the problems of over-segmentation and segmentation errors,which are caused by the difficulty of accurately representing the complex and variable color information of yarns in a single-color space and the low contrast between the target and background.Finally,the segmented bobbin is combined with the odd partial Gabor’s edge recognition operator to further distinguish bobbin texture from yarn texture and locate the position and size of the residual yarn.Experimental results show that the method is robust in identifying complex texture,damaged and dyed bobbins,and multi-color yarns.Residual yarn identification can distinguish texture features and residual yarns well and it can be transferred to the detection and differentiation of complex texture,which is significantly better than traditional methods.
文摘This research proposes a method called enhanced collaborative andgeometric multi-kernel learning (E-CGMKL) that can enhance the CGMKLalgorithm which deals with multi-class classification problems with non-lineardata distributions. CGMKL combines multiple kernel learning with softmaxfunction using the framework of multi empirical kernel learning (MEKL) inwhich empirical kernel mapping (EKM) provides explicit feature constructionin the high dimensional kernel space. CGMKL ensures the consistent outputof samples across kernel spaces and minimizes the within-class distance tohighlight geometric features of multiple classes. However, the kernels constructed by CGMKL do not have any explicit relationship among them andtry to construct high dimensional feature representations independently fromeach other. This could be disadvantageous for learning on datasets with complex hidden structures. To overcome this limitation, E-CGMKL constructskernel spaces from hidden layers of trained deep neural networks (DNN).Due to the nature of the DNN architecture, these kernel spaces not onlyprovide multiple feature representations but also inherit the compositionalhierarchy of the hidden layers, which might be beneficial for enhancing thepredictive performance of the CGMKL algorithm on complex data withnatural hierarchical structures, for example, image data. Furthermore, ourproposed scheme handles image data by constructing kernel spaces from aconvolutional neural network (CNN). Considering the effectiveness of CNNarchitecture on image data, these kernel spaces provide a major advantageover the CGMKL algorithm which does not exploit the CNN architecture forconstructing kernel spaces from image data. Additionally, outputs of hiddenlayers directly provide features for kernel spaces and unlike CGMKL, do notrequire an approximate MEKL framework. E-CGMKL combines the consistency and geometry preserving aspects of CGMKL with the compositionalhierarchy of kernel spaces extracted from DNN hidden layers to enhance the predictive performance of CGMKL significantly. The experimental results onvarious data sets demonstrate the superior performance of the E-CGMKLalgorithm compared to other competing methods including the benchmarkCGMKL.
基金support from the National Natural Science Foundation of China(Grants.11372158,11425208,and 51232004)Tsinghua University Initiative Scientific Research Program(Grant.2011Z02173)
文摘Through dimension analysis, an almost analytical model for the maximum diffusion induced stress(DIS)and critical temperature(or concentration) difference at which cracks begin to initiate in the diffusion process is developed. It interestingly predicts that the spacing of diffusioninduced cracks is constant, independent of the thickness of specimen and the temperature difference. These conclusions are validated by our thermal shock experiments on alumina plates. Furthermore, the proposed model can interpret observed hierarchical crack patterns for high temperature jump cases, and a three-stage relation between the residual strength and the temperature difference. The prediction for crack spacing can guide the biomimetic thermal-shockfailure proof design, in which the hard platelets smaller than the predicted diffusion induced by constant crack-spacing are embedded in a soft matrix, and, therefore, no fracture will happen. This may guide the design of the thermal protection system and the lithium ion battery. Finally we present the maximum normalized DISes for various geometry and boundary conditions by single-variable curves for the stressindependent diffusion process and two-variable contour plots for the stress-dependent diffusion process, which can provideengineers and materialists a simple and easy way to quickly evaluate the reliability of related materials and devices.
基金supported by the Major Project of Humanities Social Science Foundation of Ministry of Education(Grant No. 08JJD910247)Key Project of Chinese Ministry of Education (Grant No. 108120)+4 种基金National Natural Science Foundation of China (Grant No. 10871201)Beijing Natural Science Foundation (Grant No. 1102021)the Fundamental Research Funds for the Central Universitiesthe Research Funds of Renmin University of China(Grant No. 10XNL018)the China Statistical Research Project (Grant No. 2011LZ031)
文摘In this article we consider a sequence of hierarchical space model of inverse problems.The underlying function is estimated from indirect observations over a variety of error distributions including those that are heavy-tailed and may not even possess variances or means.The main contribution of this paper is that we establish some oracle inequalities for the inverse problems by using quantile coupling technique that gives a tight bound for the quantile coupling between an arbitrary sample p-quantile and a normal variable,and an automatic selection principle for the nonrandom filters.This leads to the data-driven choice of weights.We also give an algorithm for its implementation.The quantile coupling inequality developed in this paper is of independent interest,because it includes the median coupling inequality in literature as a special case.
基金partly supported by the National Natural Science Foundation of China(Nos.61532012,61370196,and 61672109)
文摘In this paper, we target a similarity search among data supply chains, which plays an essential role in optimizing the supply chain and extending its value. This problem is very challenging for application-oriented data supply chains because the high complexity of the data supply chain makes the computation of similarity extremely complex and inefficient. In this paper, we propose a feature space representation model based on key points,which can extract the key features from the subsequences of the original data supply chain and simplify it into a feature vector form. Then, we formulate the similarity computation of the subsequences based on the multiscale features. Further, we propose an improved hierarchical clustering algorithm for a similarity search over the data supply chains. The main idea is to separate the subsequences into disjoint groups such that each group meets one specific clustering criteria; thus, the cluster containing the query object is the similarity search result. The experimental results show that the proposed approach is both effective and efficient for data supply chain retrieval.