An eight wheel independently driving steering(8 WIDBS)electric vehicle is studied in this paper.The vehicle is equipped with eight in-wheel motors and a steer-by-wire system.A hierarchically coordinated vehicle dyna...An eight wheel independently driving steering(8 WIDBS)electric vehicle is studied in this paper.The vehicle is equipped with eight in-wheel motors and a steer-by-wire system.A hierarchically coordinated vehicle dynamic control(HCVDC)system,including a high-level vehicle motion controller,a control allocation,an inverse tire model and a lower-level slip/slip angle controller,is proposed for the over-actuated vehicle system.The high-level sliding mode vehicle motion controller is designed to produce desired total forces and yaw moment,distributed to longitudinal and lateral forces of each tire by an advanced control allocation method.And the slip controller is designed to use a sliding mode control method to follow the desired slip ratios by manipulating the corresponding in-wheel motor torques.Evaluation of the overall system is accomplished by sine maneuver simulation.Simulation results confirm that the proposed control system can coordinate among the redundant and constrained actuators to achieve the vehicle dynamic control task and improve the vehicle stability.展开更多
The multi-port energy router(ER)is an effective topology for integrating train traction load,AC load,the energy storage system and photovoltaic(PV)energy.The start and stop process of urban rail transit trains and the...The multi-port energy router(ER)is an effective topology for integrating train traction load,AC load,the energy storage system and photovoltaic(PV)energy.The start and stop process of urban rail transit trains and the access of distributed energy sources to rail transit ER lead to serious fluctuations of DC bus power,so it is necessary to route energy between different ports,involving multi-operating modes,while seamless switching is a major challenge.In this paper,a hierarchical coordinated control strategy is proposed to enable the multi-port ER to operate in a coor-dinated fashion under the conditions of train parking,acceleration,constant power driving and deceleration,and to switch seamlessly under various working conditions.The energy central dispatching layer sends working condi-tion instructions by sampling the state information of each port,while the microgrid control layer adopts central-ized control,receiving upper working condition instructions and sending drive signals to the local control layers to maintain the balanced energy flow of each port.In the local control layers,the PV adopts the improved perturbation and observation method of power control(PC-P&O),while the ES system adopts voltage loop control with an SOC influence factor,voltage loop control with switching factor and power loop control according to the different working conditions,so as to transmit the required train load power accurately and maintain the stability of the DC bus voltage.Finally,the effectiveness of the proposed hierarchical coordination control is verified by MATLAB/Simulink simulations.展开更多
基金Supported by the Ministerial Level Advance Research Foundation(40402050168)
文摘An eight wheel independently driving steering(8 WIDBS)electric vehicle is studied in this paper.The vehicle is equipped with eight in-wheel motors and a steer-by-wire system.A hierarchically coordinated vehicle dynamic control(HCVDC)system,including a high-level vehicle motion controller,a control allocation,an inverse tire model and a lower-level slip/slip angle controller,is proposed for the over-actuated vehicle system.The high-level sliding mode vehicle motion controller is designed to produce desired total forces and yaw moment,distributed to longitudinal and lateral forces of each tire by an advanced control allocation method.And the slip controller is designed to use a sliding mode control method to follow the desired slip ratios by manipulating the corresponding in-wheel motor torques.Evaluation of the overall system is accomplished by sine maneuver simulation.Simulation results confirm that the proposed control system can coordinate among the redundant and constrained actuators to achieve the vehicle dynamic control task and improve the vehicle stability.
基金supported by the Chinese National Natural Science Foundation (grant number 51977039 and 51950410593).
文摘The multi-port energy router(ER)is an effective topology for integrating train traction load,AC load,the energy storage system and photovoltaic(PV)energy.The start and stop process of urban rail transit trains and the access of distributed energy sources to rail transit ER lead to serious fluctuations of DC bus power,so it is necessary to route energy between different ports,involving multi-operating modes,while seamless switching is a major challenge.In this paper,a hierarchical coordinated control strategy is proposed to enable the multi-port ER to operate in a coor-dinated fashion under the conditions of train parking,acceleration,constant power driving and deceleration,and to switch seamlessly under various working conditions.The energy central dispatching layer sends working condi-tion instructions by sampling the state information of each port,while the microgrid control layer adopts central-ized control,receiving upper working condition instructions and sending drive signals to the local control layers to maintain the balanced energy flow of each port.In the local control layers,the PV adopts the improved perturbation and observation method of power control(PC-P&O),while the ES system adopts voltage loop control with an SOC influence factor,voltage loop control with switching factor and power loop control according to the different working conditions,so as to transmit the required train load power accurately and maintain the stability of the DC bus voltage.Finally,the effectiveness of the proposed hierarchical coordination control is verified by MATLAB/Simulink simulations.