期刊文献+
共找到38篇文章
< 1 2 >
每页显示 20 50 100
An Intrusion Detection Method Based on Hierarchical Hidden Markov Models 被引量:2
1
作者 JIA Chunfu YANG Feng 《Wuhan University Journal of Natural Sciences》 CAS 2007年第1期135-138,共4页
This paper presents an anomaly detection approach to detect intrusions into computer systems. In this approach, a hierarchical hidden Markov model (HHMM) is used to represent a temporal profile of normal behavior in... This paper presents an anomaly detection approach to detect intrusions into computer systems. In this approach, a hierarchical hidden Markov model (HHMM) is used to represent a temporal profile of normal behavior in a computer system. The HHMM of the norm profile is learned from historic data of the system's normal behavior. The observed behavior of the system is analyzed to infer the probability that the HHMM of the norm profile supports the observed behavior. A low probability of support indicates an anomalous behavior that may result from intrusive activities. The model was implemented and tested on the UNIX system call sequences collected by the University of New Mexico group. The testing results showed that the model can clearly identify the anomaly activities and has a better performance than hidden Markov model. 展开更多
关键词 intrusion detection hierarchical hidden markov model anomaly detection
下载PDF
无限隐Markov模型在缺失数据轴承退化趋势预测中的应用
2
作者 李志农 李舒扬 +1 位作者 柳宝 陶俊勇 《振动工程学报》 EI CSCD 北大核心 2023年第2期574-581,共8页
相比较于在完整数据下设备性能退化预测,缺失数据下的预测是更加困难的,也是更有意义的。然而,现有的轴承性能退化预测方法都未考虑缺失数据下的预测,基于此,提出了一种基于无限隐马尔可夫模型的缺失数据下轴承退化预测方法。在提出的... 相比较于在完整数据下设备性能退化预测,缺失数据下的预测是更加困难的,也是更有意义的。然而,现有的轴承性能退化预测方法都未考虑缺失数据下的预测,基于此,提出了一种基于无限隐马尔可夫模型的缺失数据下轴承退化预测方法。在提出的方法中,通过建立无限隐马尔可夫预测模型,预测了滚动轴承样本数据在振荡阶段所缺失的数据点,形成新的完整数据。同时,再使用建立的预测模型对新的完整数据进行单步预测。实验结果表明,与真实值对比,得到的预测数据具有较小的平均误差值;对比真实值、完整数据下的预测值和新的完整数据下的预测值,验证了提出方法的有效性,能够反映滚动轴承退化的变化趋势。提出的方法可为数据缺失下滚动轴承的退化趋势预测提供一种思路,具有重要的理论价值和工程应用价值。 展开更多
关键词 故障诊断 滚动轴承 无限隐马尔可夫模型(iHMM) 性能退化 趋势预测 缺失数据
下载PDF
Cross-Layer Hidden Markov Analysis for Intrusion Detection
3
作者 K.Venkatachalam P.Prabu +3 位作者 B.Saravana Balaji Byeong-Gwon Kang Yunyoung Nam Mohamed Abouhawwash 《Computers, Materials & Continua》 SCIE EI 2022年第2期3685-3700,共16页
Ad hoc mobile cloud computing networks are affected by various issues,like delay,energy consumption,flexibility,infrastructure,network lifetime,security,stability,data transition,and link accomplishment.Given the issu... Ad hoc mobile cloud computing networks are affected by various issues,like delay,energy consumption,flexibility,infrastructure,network lifetime,security,stability,data transition,and link accomplishment.Given the issues above,route failure is prevalent in ad hoc mobile cloud computing networks,which increases energy consumption and delay and reduces stability.These issues may affect several interconnected nodes in an ad hoc mobile cloud computing network.To address these weaknesses,which raise many concerns about privacy and security,this study formulated clustering-based storage and search optimization approaches using cross-layer analysis.The proposed approaches were formed by cross-layer analysis based on intrusion detection methods.First,the clustering process based on storage and search optimization was formulated for clustering and route maintenance in ad hoc mobile cloud computing networks.Moreover,delay,energy consumption,network lifetime,and link accomplishment are highly addressed by the proposed algorithm.The hidden Markov model is used to maintain the data transition and distributions in the network.Every data communication network,like ad hoc mobile cloud computing,faces security and confidentiality issues.However,the main security issues in this article are addressed using the storage and search optimization approach.Hence,the new algorithm developed helps detect intruders through intelligent cross layer analysis with theMarkov model.The proposed model was simulated in Network Simulator 3,and the outcomes were compared with those of prevailing methods for evaluating parameters,like accuracy,end-to-end delay,energy consumption,network lifetime,packet delivery ratio,and throughput. 展开更多
关键词 Data transition end-to-end delay energy consumption FLEXIBILITY hidden markov model intrusion detection link optimization packet delivery ratio PRIVACY security SEARCHING THROUGHPUT
下载PDF
分层隐Markov模型在设备状态识别中的应用研究 被引量:2
4
作者 滕红智 贾希胜 +3 位作者 赵建民 张星辉 王正军 葛家友 《中国机械工程》 EI CAS CSCD 北大核心 2011年第18期2175-2181,共7页
与传统的隐Markov模型(HMM)相比较而言,应用分层隐Markov模型(HHMM)对设备进行状态识别有诸多优点,而且能以概率的形式更为精确地计算识别结果。针对模型参数随着设备状态的增加呈指数倍增这一问题,引入动态贝叶斯网络这一新的方法,由... 与传统的隐Markov模型(HMM)相比较而言,应用分层隐Markov模型(HHMM)对设备进行状态识别有诸多优点,而且能以概率的形式更为精确地计算识别结果。针对模型参数随着设备状态的增加呈指数倍增这一问题,引入动态贝叶斯网络这一新的方法,由于该方法可以有效地降低模型的计算复杂度并缩短推理时间,所以将HHMM表达为动态贝叶斯网络,利用预处理的振动信号对设备的健康状态进行识别;针对现有状态分类方法的局限性,提出了基于K均值算法和交叉验证方法相结合的状态数优化方法;以齿轮箱全寿命实验为依据,对该模型实现状态识别的基本框架和计算过程进行了研究,研究结果为复杂设备的状态识别提供了新的思路。 展开更多
关键词 分层隐markov模型 状态识别 动态贝叶斯网络 状态数优化
下载PDF
高比例新能源电力系统可靠性高效评估和薄弱环节辨识方法 被引量:1
5
作者 杨高峰 胡文 +3 位作者 方钦 汤林 邵常政 何豪杰 《电工电能新技术》 CSCD 北大核心 2024年第4期43-52,共10页
新能源渗透率的提高可能诱发供电中断的风险,使电力系统的运行可靠性降低,传统的中长期可靠性评估方法难以满足运行可靠性评估的时间需求。本文提出了一种电力系统运行可靠性高效评估算法,揭示了电力系统运行可靠性指标与风电出力不确... 新能源渗透率的提高可能诱发供电中断的风险,使电力系统的运行可靠性降低,传统的中长期可靠性评估方法难以满足运行可靠性评估的时间需求。本文提出了一种电力系统运行可靠性高效评估算法,揭示了电力系统运行可靠性指标与风电出力不确定性因素的解析函数关系,避免不确定性因素变化时可靠性的重复计算。首先,基于隐马尔可夫模型对风电出力的分布特性进行建模;然后,通过状态枚举-混沌多项式展开方法建立可靠性指标与风电出力间的解析函数;最后,基于解析函数实现对实时风电出力下的新能源电力系统运行可靠性的高效评估及薄弱环节辨识。以修改的IEEE-RTS79系统为例进行分析计算,验证了所提方法的有效性。 展开更多
关键词 新能源电力系统 隐马尔可夫模型 混沌多项式展开 可靠性评估 状态枚举 薄弱环节辨识
下载PDF
基于无限因子隐Markov模型的旋转机械故障识别方法 被引量:3
6
作者 李志农 熊俊伟 《失效分析与预防》 2016年第3期133-138,共6页
在机械故障识别方面,因子隐Markov模型是目前常用的识别工具。无限因子隐Markov模型(IFHMM)是因子隐Markov模型(FHMM)的一种扩展形式,克服了因子隐Markov模型链条数往往事先假定的缺点。本研究将无限因子隐Markov模型(IFHMM)运用到旋转... 在机械故障识别方面,因子隐Markov模型是目前常用的识别工具。无限因子隐Markov模型(IFHMM)是因子隐Markov模型(FHMM)的一种扩展形式,克服了因子隐Markov模型链条数往往事先假定的缺点。本研究将无限因子隐Markov模型(IFHMM)运用到旋转机械的升降速过程故障的诊断当中,提出了使用IFHMM作为诊断工具的旋转机械故障诊断方法,并与基于因子隐Markov模型的旋转机械故障诊断方法进行了对比,最后将提出的方法成功地应用到旋转机械的故障中。实验结果表明,提出的方法明显优于FHMM识别方法。 展开更多
关键词 无限因子隐markov模型 模式识别 故障诊断 旋转机械
下载PDF
无限隐Markov模型理论及仿真研究 被引量:2
7
作者 李志农 柳宝 《南昌航空大学学报(自然科学版)》 CAS 2016年第2期37-43,共7页
论述了传统隐Markov模型的理论及其存在的不足,并在此基础之上,阐明了无限隐Markov模型的理论及算法。在i HMM中,首先,从Dirichlet过程进行状态间转移概率的计算推导。然后,使用分层Dirichlet过程进行隐状态状态机制和生成机制的推理。... 论述了传统隐Markov模型的理论及其存在的不足,并在此基础之上,阐明了无限隐Markov模型的理论及算法。在i HMM中,首先,从Dirichlet过程进行状态间转移概率的计算推导。然后,使用分层Dirichlet过程进行隐状态状态机制和生成机制的推理。其次,对模型超越参数的推理、优化和似然估计。还通过仿真实例对i HMM推理算法进行了验证,仿真结果表明i HMM具有很好的状态数目发掘能力,能够准确反映状态序列的结构特征。 展开更多
关键词 无限隐markov模型 Dirichlet过程 吉布斯采样
下载PDF
基于无限特征选择层次链接无限隐Markov模型的轴承故障诊断方法研究 被引量:1
8
作者 李舒扬 李志农 +2 位作者 周世健 毛清华 张旭辉 《兵器装备工程学报》 CAS CSCD 北大核心 2022年第9期217-225,共9页
针对无限隐Markov故障诊断模型在对旋转机械中多种故障训练时割裂了各个数据集之间联系,造成每种故障数据集单独训练的问题,提出了一种层次链接无限隐Markov故障诊断模型。将层次链接无限隐Markov故障模型与无限特征选取后优化多尺度排... 针对无限隐Markov故障诊断模型在对旋转机械中多种故障训练时割裂了各个数据集之间联系,造成每种故障数据集单独训练的问题,提出了一种层次链接无限隐Markov故障诊断模型。将层次链接无限隐Markov故障模型与无限特征选取后优化多尺度排列熵相结合,应用到滚动轴承故障诊断领域。无限特征算法能够高效地提取故障振动信号中包含的信息,进而完成对不同故障的分类。将获得的数据输入粒子群算法优化多尺度排列熵参数,并对其求得相应的多尺度排列熵值,经无限特征算法对得到的特征量进行排序,筛选出相比较下包含信息量大的特征量输入到层次链接无限隐Markov模型中训练与识别。在此基础上将结果与使用无限特征算法筛选无限隐Markov模型的训练识别结果、随机特征选择下的层次链接无限隐Markov模型结果作对比,实验研究表明:无限特征算法能有效提取更具价值的特征信息,层次链接无限隐Markov故障诊断模型能够更有效地识别,为滚动轴承的故障诊断提供了新的思路。 展开更多
关键词 层次链接无限隐markov模型 无限特征 优化多尺度排列熵 轴承故障诊断 特征提取
下载PDF
Bi-dimension decomposed hidden Markov models for multi-person activity recognition
9
作者 Wei-dong ZHANG Feng CHEN Wen-li XU 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2009年第6期810-819,共10页
We present a novel model for recognizing long-term complex activities involving multiple persons. The proposed model, named ‘decomposed hidden Markov model’ (DHMM), combines spatial decomposition and hierarchical ab... We present a novel model for recognizing long-term complex activities involving multiple persons. The proposed model, named ‘decomposed hidden Markov model’ (DHMM), combines spatial decomposition and hierarchical abstraction to capture multi-modal, long-term dependent and multi-scale characteristics of activities. Decomposition in space and time offers conceptual advantages of compaction and clarity, and greatly reduces the size of state space as well as the number of parameters. DHMMs are efficient even when the number of persons is variable. We also introduce an efficient approximation algorithm for inference and parameter estimation. Experiments on multi-person activities and multi-modal individual activities demonstrate that DHMMs are more efficient and reliable than familiar models, such as coupled HMMs, hierarchical HMMs, and multi-observation HMMs. 展开更多
关键词 Multi-channel setting Hierarchical modeling hidden markov model Activity recognition
原文传递
面向商务信息抽取的产品命名实体识别研究 被引量:47
10
作者 刘非凡 赵军 +3 位作者 吕碧波 徐波 于浩 夏迎炬 《中文信息学报》 CSCD 北大核心 2006年第1期7-13,共7页
市场信息化使得商务信息抽取、市场内容管理日益成为信息科学领域的一个研究热点。产品命名实体识别作为其中非常重要的关键技术之一也逐渐受到人们的关注。本文面向商务信息抽取对产品命名实体进行了定义并系统分析了其识别任务的特点... 市场信息化使得商务信息抽取、市场内容管理日益成为信息科学领域的一个研究热点。产品命名实体识别作为其中非常重要的关键技术之一也逐渐受到人们的关注。本文面向商务信息抽取对产品命名实体进行了定义并系统分析了其识别任务的特点和难点,提出了一种基于层级隐马尔可夫模型(hierarchical hid-den Markov model)的产品命名实体识别方法,实现了汉语自由文本中产品命名实体识别和标注的原型系统。实验表明,该系统在电子数码和手机领域均取得了令人满意的实验结果,对产品名实体、产品型号实体、产品品牌实体整体识别性能的F值分别为79.7%,86.9%,75.8%。通过和最大熵模型相比较,验证了HHMM对于处理多尺度嵌套序列有更强的表征能力。 展开更多
关键词 计算机应用 中文信息处理 产品命名实体识别 商务信息抽取 层级隐马尔可夫模型
下载PDF
基于HDP-CHMM的机械设备性能退化评估 被引量:6
11
作者 王恒 季云 +1 位作者 朱龙彪 刘肖 《振动.测试与诊断》 EI CSCD 北大核心 2018年第4期733-737,共5页
针对传统隐马尔可夫模型(hidden Markov model,简称HMM)状态数必须预先设定的不足,提出了一种基于分层狄利克雷过程-连续隐马尔可夫模型(hierarchical Dirichlet process-continuous hidden Markov model,简称HDP-CHMM)的机械设备性能... 针对传统隐马尔可夫模型(hidden Markov model,简称HMM)状态数必须预先设定的不足,提出了一种基于分层狄利克雷过程-连续隐马尔可夫模型(hierarchical Dirichlet process-continuous hidden Markov model,简称HDP-CHMM)的机械设备性能退化评估方法。该方法利用分层狄利克雷模型的分层聚类原理,在狄利克雷过程(Dirichlet process,简称DP)模型的基础上进行扩展,利用多组关联数据实现了模型结构根据观测数据的自适应变化和动态调整,获得设备运行过程中的最优退化状态数,并结合连续隐马尔可夫模型(continuous hidden Markov model,简称CHMM)良好的分析和建模能力,获得设备退化状态转移路径,实现机械设备运行过程中的退化状态识别和性能评估。利用滚动轴承全寿命数据的多组特征值进行了应用研究,并与基于K-S检验算法的机械设备零部件性能退化评估方法进行了比较。结果表明,HDP-CHMM模型可以对轴承实际运行状态转移过程进行建模,有效识别轴承运行中的不同退化状态,为基于状态的设备维修提供了理论指导。 展开更多
关键词 分层狄利克雷模型 连续隐马尔可夫模型 性能退化评估 滚动轴承
下载PDF
基于TSB-HMM模型的雷达高分辨距离像目标识别方法 被引量:13
12
作者 潘勉 王鹏辉 +2 位作者 杜兰 刘宏伟 保铮 《电子与信息学报》 EI CSCD 北大核心 2013年第7期1547-1554,共8页
针对雷达高分辨距离像(HRRP)的识别问题,该文提出了一种基于时域特征的截断Stick-Breaking过程隐马尔可夫模型(TSB-HMM),并建立了基于TSB-HMM模型的分层识别算法,利用TSB-HMM模型结合时域特征和功率谱特征对HRRP进行分层识别。实测数据... 针对雷达高分辨距离像(HRRP)的识别问题,该文提出了一种基于时域特征的截断Stick-Breaking过程隐马尔可夫模型(TSB-HMM),并建立了基于TSB-HMM模型的分层识别算法,利用TSB-HMM模型结合时域特征和功率谱特征对HRRP进行分层识别。实测数据的实验结果表明,该方法是一种有效的雷达HRRP识别方法,分层识别的算法可极大提高目标的平均识别率。特别是在训练样本数极少的情况下,TSB-HMM模型仍能获得较好的识别性能。 展开更多
关键词 雷达目标识别 高分辨距离像 截断Stick-Breaking隐马尔可夫模型 分层识别
下载PDF
基于层次隐马尔科夫模型和变长语义模式的入侵检测方法 被引量:8
13
作者 段雪涛 贾春福 刘春波 《通信学报》 EI CSCD 北大核心 2010年第3期109-114,共6页
分析了定长系统调用短序列在入侵检测系统应用中的不足,利用进程堆栈中的函数调用返回地址信息,提出了一种变长短序列的语义模式切分方法,并根据这种变长语义模式之间的层次关系和状态转移特性提出了基于层次隐马尔科夫模型的入侵检测... 分析了定长系统调用短序列在入侵检测系统应用中的不足,利用进程堆栈中的函数调用返回地址信息,提出了一种变长短序列的语义模式切分方法,并根据这种变长语义模式之间的层次关系和状态转移特性提出了基于层次隐马尔科夫模型的入侵检测方法。实验结果表明,与传统的隐马尔科夫模型相比,基于层次隐马尔科夫模型的入侵检测方法具有更好的检测效果。 展开更多
关键词 入侵检测 层次隐马尔科夫模型 系统调用 变长语义模式 进程堆栈
下载PDF
软件交互行为的可信性分析与态势预测研究 被引量:3
14
作者 满君丰 杨路明 +1 位作者 李长云 文志诚 《小型微型计算机系统》 CSCD 北大核心 2009年第11期2203-2209,共7页
研究现代分布式软件系统中交互实体的行为可信性问题,关注运行期意图、情景、行为和行为效应之间的关系,采用先进的统计机器学习工具分析行为踪迹规律,提出了一个新的软件行为分析与态势预测方法.针对松散聚合的交互实体间可能产生新的... 研究现代分布式软件系统中交互实体的行为可信性问题,关注运行期意图、情景、行为和行为效应之间的关系,采用先进的统计机器学习工具分析行为踪迹规律,提出了一个新的软件行为分析与态势预测方法.针对松散聚合的交互实体间可能产生新的交互事件和行为模式的问题,本文用分层Dirichlet过程和无限隐Markov模型对被监测的交互接口数据进行聚类确定未知交互事件,用含有未知事件的序列进行行为模式的半监督学习,由管理者将其添加到规则与知识库中.在确定未知事件和行为模式时,用Beam抽样方法较其他方法(如Gibbs抽样)有更高的数据抽样和推理效率.当知识库的行为模式达到一定规模时,系统便可以无监督地对交互行为进行分析和预测.本文用HMM的Viterbi算法分析当前交互事件的最佳序列,从而确定当前交互行为的善恶,对恶意行为及时报警,对非恶意行为的后续趋势进行主动预测.通过仿真实验证实了该方法在软件行为分析与预测上具有独特的优势. 展开更多
关键词 现代分布式软件 行为可信 行为分析 态势预测 无限隐markov模型
下载PDF
空巢老人智能监护系统中异常情况检测的研究 被引量:8
15
作者 杨蕾 杨路明 +1 位作者 满君丰 刘广滨 《计算机工程与应用》 CSCD 北大核心 2009年第16期242-245,共4页
对空巢家庭的老人和设备的异常检测与即时预警是智能家居系统的重点和难点问题。利用多模态联合传感技术获取时空上下文信息,由各类感知组件进行处理而获取居住者的动作,用改进的多层隐马尔科夫模型对离散的动作进行抽象而获得人的高层... 对空巢家庭的老人和设备的异常检测与即时预警是智能家居系统的重点和难点问题。利用多模态联合传感技术获取时空上下文信息,由各类感知组件进行处理而获取居住者的动作,用改进的多层隐马尔科夫模型对离散的动作进行抽象而获得人的高层行为——事件。居住者常态的表示模型被构建并作为行为正常与否的分类器来检测异常行为。为了表达上下文信息,采用语义分级、逐层抽象的方法设计了一套多媒体本体,用于智能家居系统中对媒体信息的语义化标注和推理。改进了针对室内多活动设备的多交叉事件的悲观情感模型,用以解决视频组件难以检测的活动设备状态变化的问题。实验证实该方案在异常检测和预警方面有很好的性能。 展开更多
关键词 时空上下文 多媒体本体 语义分级 语义标注 异常检测 多层隐马尔科夫模型 悲观情感模型
下载PDF
基于遗传算法的隐马尔可夫模型在名词短语识别中的应用研究 被引量:4
16
作者 李荣 郑家恒 郭梅英 《计算机科学》 CSCD 北大核心 2009年第10期244-246,261,共4页
为了进一步提高名词短语的识别精度,针对遗传算法和隐马尔可夫模型各自的特点,提出一种基于遗传算法的隐马尔可夫模型识别方法。该方法是在高准确率词性标注的基础上实现的。在训练阶段,用遗传算法获取HMM参数;识别阶段先用一种改进的Vi... 为了进一步提高名词短语的识别精度,针对遗传算法和隐马尔可夫模型各自的特点,提出一种基于遗传算法的隐马尔可夫模型识别方法。该方法是在高准确率词性标注的基础上实现的。在训练阶段,用遗传算法获取HMM参数;识别阶段先用一种改进的Viterbi算法进行动态规划,识别同层名词短语,然后用逐层扫描算法和改进Viterbi算法相结合来识别嵌套名词短语。实验结果表明,此联合算法达到了94.78%的准确率和94.29%的召回率,充分融合了遗传算法和隐马尔可夫模型的优点,证明它较单一的隐马尔可夫模型识别法具有更好的识别效果。 展开更多
关键词 短语识别 遗传算法 隐马尔可夫模型 VITERBI算法 层次分析
下载PDF
中医医案文献自动分词研究 被引量:9
17
作者 张帆 刘晓峰 孙燕 《中国中医药信息杂志》 CAS CSCD 2015年第2期38-41,共4页
目的研究适用于中医医案文献自动分词的方案。方法使用层叠隐马模型作为分词模型,建立相关中医领域词典及测试语料库,对语料库中古代医案文献和现代医案文献各300篇进行分词及评测。结果在未使用中医领域词典时,两类医案文献分词准确率... 目的研究适用于中医医案文献自动分词的方案。方法使用层叠隐马模型作为分词模型,建立相关中医领域词典及测试语料库,对语料库中古代医案文献和现代医案文献各300篇进行分词及评测。结果在未使用中医领域词典时,两类医案文献分词准确率均为75%左右;使用中医领域词典后,古代医案文献的分词准确率达到90.73%,现代医案文献的分词准确率达到95.66%。在未使用中医领域词典时,词性标注准确率古代医案文献为56.74%,现代医案文献为64.81%;使用中医领域词典后,现代医案文献为91.45%,明显高于古代医案文献的78.47%。结论现有分词方案初步解决了中医医案文献的分词问题,对现代医案文献的词性标注也基本正确,但古代医案文献的词性标注影响因素较多,还需进一步研究。 展开更多
关键词 中医医案文献 自动分词 中医领域词典 层叠隐马模型 词性标注
下载PDF
一种改进Viterbi算法的应用研究 被引量:7
18
作者 李荣 郑家恒 《计算机工程与设计》 CSCD 北大核心 2007年第3期530-531,571,共3页
为降低现代汉语句法分析的难度,以北大和哈工大语料为基础,利用改进的Viterbi算法对汉语真实文本进行了短语识别研究。提出了在隐马尔可夫模型(HMM)框架下,训练阶段依据统计概率信息,以极大似然法获取HMM参数,识别阶段用一种改进的Vite... 为降低现代汉语句法分析的难度,以北大和哈工大语料为基础,利用改进的Viterbi算法对汉语真实文本进行了短语识别研究。提出了在隐马尔可夫模型(HMM)框架下,训练阶段依据统计概率信息,以极大似然法获取HMM参数,识别阶段用一种改进的Viterbi算法进行动态规划,识别同层短语;在此基础上,运用逐层扫描算法和改进Viterbi算法相结合的方法来识别汉语嵌套短语。实验结果表明,识别正确率在封闭测试中可达93.52%,在开放测试中达到77.529%,证明该算法对短语识别问题具有良好的适应性和实用性。 展开更多
关键词 隐马尔可夫模型 VITERBI算法 层次分析 短语识别 句法分析
下载PDF
基于HDP-HMM的机械设备故障预测方法研究 被引量:6
19
作者 王恒 周易文 +1 位作者 瞿家明 季云 《振动与冲击》 EI CSCD 北大核心 2019年第8期173-179,共7页
针对隐马尔科夫模型状态数必须预先设定的不足,提出了一种基于分层狄利克雷过程-隐马尔科夫模型(HDP-HMM)的机械设备故障预测方法。该算法通过构造HDP作为HMM参数的先验分布,利用HDP分层共享和自动聚类的优点,实现了模型结构动态更新,... 针对隐马尔科夫模型状态数必须预先设定的不足,提出了一种基于分层狄利克雷过程-隐马尔科夫模型(HDP-HMM)的机械设备故障预测方法。该算法通过构造HDP作为HMM参数的先验分布,利用HDP分层共享和自动聚类的优点,实现了模型结构动态更新,获得设备运行过程中的隐状态数;基于HDP-HMM所建立的退化状态动态转移关系,确定设备早期故障点和功能故障点,实现设备的健康等级评估和故障预测。利用美国USFI/UCR智能维护系统中心提供的滚动轴承全寿命数据进行了应用研究。结果表明,针对多观测序列,HDP-HMM能有效实现组合聚类,识别结果不依赖于算法初始参数的选择,具有较强的鲁棒性;与基于K-S检验的退化评估算法比较表明,HDP-HMM更能有效描述设备实际退化过程。 展开更多
关键词 分层狄利克雷过程-隐马尔科夫模型(HDP-HMM) 退化状态 故障预测
下载PDF
一种现代汉语句法分析方法的建立与实现 被引量:2
20
作者 徐健 张辉 蔡劲松 《计算机应用与软件》 CSCD 北大核心 2004年第1期39-41,87,共4页
本文以 7万小学生语文课本分词语料为基础 ,建立一个隐马尔可夫模型与层次分析法相结合的完全句法分析方法 ,实现了现代汉语完全句法分析。实验结果表明 ,该方法具有一定的独创性和高效性 ,其完全句法分析正确率在封闭和开放测试中分别... 本文以 7万小学生语文课本分词语料为基础 ,建立一个隐马尔可夫模型与层次分析法相结合的完全句法分析方法 ,实现了现代汉语完全句法分析。实验结果表明 ,该方法具有一定的独创性和高效性 ,其完全句法分析正确率在封闭和开放测试中分别为92 43 %和 65 3 74%。 展开更多
关键词 自然语言处理 现代汉语 句法分析方法 隐马尔可夫模型 层次分析法 信息处理
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部