Modelling of migration and accumulation of elements Au and Ag in rocks under temperatures of 350–450°C and a confining pressure of 300 MPa and axial pressure of 100–150 MPa is conducted. It is found that the co...Modelling of migration and accumulation of elements Au and Ag in rocks under temperatures of 350–450°C and a confining pressure of 300 MPa and axial pressure of 100–150 MPa is conducted. It is found that the contents of gold and silver get higher in metallic sulphides such as pyrite, chalcopyrite and sphalerite as well as in quartz and muscovite, and get lower in chlorite, biotite, seriate, albite and calcite, showing that tectono-dynamics is one of the important factors for petrogenesis and metallogenesis.展开更多
High temperature capacitance variance of multi-layer ceramic capacitor (MLCC) is researched.Combined with the characteristics of MLCC,the application of MLCC in fuze is proposed,and the temperature stability of MLCC...High temperature capacitance variance of multi-layer ceramic capacitor (MLCC) is researched.Combined with the characteristics of MLCC,the application of MLCC in fuze is proposed,and the temperature stability of MLCC is also discussed.The experimental results indicate that the capacitance of low frequency MLCC is largely affected by temperature.展开更多
This experiment is to study the special resistant induced by the high-speed evaporation surrounding themoving high-temperature particles. An observable equipment was designed, in which the first 11 experiments wereper...This experiment is to study the special resistant induced by the high-speed evaporation surrounding themoving high-temperature particles. An observable equipment was designed, in which the first 11 experiments wereperformed by pouring one or several Zirconia spheres with various high-temperature and a diameter of 3~ 10 mminto a water pool. The particles falling-down speeds were recorded by high-speed photographic instrumentation,and pressures and water temperatures were measured. A comparison between the experiments with cold and hotspheres respectively, employing three different sphere types each, was presented. The experimental data, com-pared with the theory of the evaporation drag model, are nearly identical.展开更多
Due to the important scientific significance of the interaction between alkaline feldspar and high-temperature and high-pressure fluids. We have conducted a series of autoclave experiments of feldspar dissolution and ...Due to the important scientific significance of the interaction between alkaline feldspar and high-temperature and high-pressure fluids. We have conducted a series of autoclave experiments of feldspar dissolution and secondary mineral precipitation in conditions of 250–500℃, 8-50 MPa, and pH = 3.0 and 5.5. Based on the interaction experiments between alkaline feldspar and fluid of high-temperatures and high-pressures, we get the main results as follows:(1) The law that people have grasped below the critical point about the influence of temperature, pressure, and pH value on the alkaline feldspar dissolution behavior is still held above the critical point.(2) Due to the experimental techniques of autoclave flip 180°—sharp quenching and based on electron microprobe analysis of mineral new formed, theoretical analysis has determined that the new altered minerals distributed on the island dissolution surface of feldspar are products of precipitation on a feldspar surface after saturation of the relative ion concentration in water fluid.展开更多
1 Introduction In contrast,1experimental geochemistry is a young subject,but in recent years,the research on experiment of high temperature and high pressure has become an important branch in the parallel subjects of ...1 Introduction In contrast,1experimental geochemistry is a young subject,but in recent years,the research on experiment of high temperature and high pressure has become an important branch in the parallel subjects of traditional mineralogy,petrology,geochemistry and geophysics.It is not only an important and essential way and window to understand geological processes in depth and geological展开更多
As an experimental technique, it’s desired that the temperature in specimen is uniform in high temperature split Hopkinson pressure bar (SHPB) experiments. However, the temperature in specimen decreases and the tempe...As an experimental technique, it’s desired that the temperature in specimen is uniform in high temperature split Hopkinson pressure bar (SHPB) experiments. However, the temperature in specimen decreases and the temperature of bars increases when specimen starts to contact with bars, which induces the nonuniform temperature distribution in specimen, and may result in inac-curacy of experimental results. In this paper, the temperature distributions of specimen and bars in high temperature SHPB experiments were investigated while the specimen was heated alone. Firstly, the temperature history of specimen was measured at different initial temperatures by ex-periments, then simulation was carried out. Simulation results were consistent with experimental results by adjusting the thermal contact coefficient between specimen and bars. By this way, the thermal contact coefficient and simulation results were validated, and the proper cold contact times of specimen and bars in high temperature SHPB experiments were discussed. Finally, the results were compared with those in references.展开更多
With lamprophyre and pyrite from the Laowangzhai gold deposit, Yunnan Province, China, as starting materials, and at pressures from 1.5 to 3.0 GPa and temperatures from 1160 to 1560℃ , an experimental study was carri...With lamprophyre and pyrite from the Laowangzhai gold deposit, Yunnan Province, China, as starting materials, and at pressures from 1.5 to 3.0 GPa and temperatures from 1160 to 1560℃ , an experimental study was carried out on the liquid immiscibility of lamprophyre-sulfide melt at high temperature and ultra-high pressure in the DS-29A cubic 3600T/6-type high pressure apparatus. Results showed that the liquid immiscibility of lampro-pyre-sulfide melt in the magmatic system would happen during the early magmatic evolution (high temperature and high pressure conditions) and was controlled by temperature and pressure. The sulfide melt which was separated from the lamprophyric melt would make directional movement in the temperature and pressure field and assemble in the low-temperature and low-pressure region. Because the density of SM is higher than that of the lamprophyric melt, the former would gather together at the bottom of the magma chamber and there would exist a striking boundary between the two melts. On the other hand, the results also suggested that there would be little possibility for lampro-phyric magma to carry massive gold, and lamprophyres can't provide many of oreforming materials (Au) in the processes of gold mineralization.展开更多
This work applied molecular dynamics(MD)simulation to calculate densities of natural gas mixtures at extremely high pressure(>138 MPa)and high temperature(>200℃)conditions(x HPHT)to bridge the knowledge and tec...This work applied molecular dynamics(MD)simulation to calculate densities of natural gas mixtures at extremely high pressure(>138 MPa)and high temperature(>200℃)conditions(x HPHT)to bridge the knowledge and technical gaps between experiments and classical theories.The experimental data are scarce at these conditions which are also out of assumptions for classical predictive correlations,such as the Dranchuk&Abou-Kassem(DAK)equation of state(EOS).Force fields of natural gas components were carefully chosen from literatures and the simulation results are validated with experimental data.The largest relative error is 2.67%for pure hydrocarbons,2.99%for C1/C3 mixture,7.85%for C1/C4 mixture,and 8.47%for pure H2S.These satisfactory predictions demonstrate that the MD simulation approach is reliable to predict natural-and acid-gases thermodynamic properties.The validated model is further used to generate data for the study of the EOS with pressure up to 276 MPa and temperature up to 573 K.Our results also reveal that the Dranchuk&Abou-Kassem(DAK)EOS is capable of predicting natural gas compressibility to a satisfactory accuracy at x HPHT conditions,which extends the confidence range of the DAK EOS.展开更多
Center for Analysis and Prediction, China Seismological Bureau, Beijing 100036, China 2) Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China
Objective:To study the effect of training under high temperature on blood and heat shock protein 72(HSP72)expression of flying saucer athletes.Methods:The numbers of training group and control group are 30.Twenty-four...Objective:To study the effect of training under high temperature on blood and heat shock protein 72(HSP72)expression of flying saucer athletes.Methods:The numbers of training group and control group are 30.Twenty-four flying saucer athletes in Zhejiang province were selected and randomly divided into training group and control group,15 in each group.Peripheral venous blood of each group was taken before and after the experiment.The HSP72 content of lymphocyte,blood routine and biochemical indexes were measured respectively.Results:There was significant difference in white blood cell in training group count before and after the experiment(P<0.05).The expression of HSP72 and the white blood cell in training group was higher than that control group(P<0.05).Conclusions:Organism could be affected and turned to stress state due to training under high temperature.It is necessary to provide the safeguard for the flying saucer athletes under high temperature in order to prevent the damage.展开更多
The transitional pressure of quartz coesite under the differential stress and highly strained conditions is far from the pressure of the stable field under the static pressure. Therefore, the effect of the different...The transitional pressure of quartz coesite under the differential stress and highly strained conditions is far from the pressure of the stable field under the static pressure. Therefore, the effect of the differential stress should be considered when the depth of petrogenesis is estimated about ultrahigh pressure metamorphic (UHPM) rocks. The rheological strength of typical ultrahigh pressure rocks in continental subduction zone was derived from the results of the laboratory experiments. The results indicate the following three points. (1) The rheological strength of gabbro, similar to that of eclogite, is smaller than that of clinopyroxenite on the same condition. (2) The calculated strength of rocks (gabbro, eclogite and clinopyroxenite) related to UHPM decreases by nearly one order of magnitude with the temperature rising by 100 ℃ in the range between 600 and 900 ℃. The calculated strength is far greater than the faulting strength of rocks at 600 ℃, and is in several hundred to more than one thousand mega pascals at 700-800 ℃, which suggests that those rocks are located in the brittle deformation region at 600 ℃, but are in the semi brittle to plastic deformation region at 700-800 ℃. Obviously, the 700 ℃ is a brittle plastic transition boundary. (3) The calculated rheological strength in the localized deformation zone on a higher strain rate condition (1.6×10 -12 s -l ) is 2-5 times more than that in the distributed deformation zone on a lower strain rate condition (1.6×10 -14 s -1 ). The average rheological stress (1 600 MPa) at the strain rate of 10 -12 s -1 stands for the ultimate differential stress of UHPM rocks in the semi brittle flow field, and the average rheological stress (550-950 MPa) at the strain rate of l0 -14 - 10 -13 s -l stands for the ultimate differential stress of UHPM rocks in the plastic flow field, suggesting that the depth for the formation of UHPM rocks is more than 20-60 km below the depth estimated under static pressure condition due to the effect of the differential stress.展开更多
Hydrous minerals are important water carriers in the crust and the mantle, especially in the subduction zone. With the recent development of the experimental technique, studies of the electrical conductivity of hydrou...Hydrous minerals are important water carriers in the crust and the mantle, especially in the subduction zone. With the recent development of the experimental technique, studies of the electrical conductivity of hydrous silicate minerals under controlled temperature, pressure and oxygen fugacity, have helped to constrain the water distribution in the Earth's interior. This paper introduces high pressure and temperature experimental study of electrical conductivity measurement of hydrous minerals such as serpentine, talc, brucite, phase A, super hydrous phase B and phase D, and assesses the data quality of the above minerals. The dehydration effect and the pressure effect on the bulk conductivity of the hydrous minerals are specifically emphasized. The conduction mechanism of hydrous minerals and the electrical structure of the subduction zone are discussed based on the available conductivity data. Finally, the potential research fields of the electrical conductivity of hydrous minerals is presented.展开更多
Here we present an insight into the genesis of Himalayan granulitic lower crust based on the experimental studies on the dehydration melting of natural biotite-plagioclase gneiss performed at the temperatures of 770-9...Here we present an insight into the genesis of Himalayan granulitic lower crust based on the experimental studies on the dehydration melting of natural biotite-plagioclase gneiss performed at the temperatures of 770-980°C and the pressures of 1.0-1.4 GPa. The experiments produce peraluminous granitic melt and residual phase assemblage (Pl+Qz+Gat+Bio+Opx±Cpx+Ilm/Rut±Kfs). The residual mineral assemblage is similar to those of granu-lites observed at the eastern and western Himalayan syntax-ises, and the chemical compositions of characteristic minerals-garnet and pyroxene in the residual phase and the granu-lite are identical. Additionally, the modeled wave velocities of the residual phase assemblage are comparable well with those of the top part of lower crust beneath Himalayas. Hence, we suggest that (1) the top part of lower crust beneath Himalayas is probably made up of garnet-bearing intermediate granulite; (2) the formations of granulite and leucogranites in Himalayas are interrelated as the展开更多
By taking lamprophyres in the Laowangzhai gold orefield, Yunnan Province, as starting materials, the melting experiments of lamprophyre + gold have been conducted under 1.5 and 3.0 GPa in a DS-29A cubic-type 3 600 t u...By taking lamprophyres in the Laowangzhai gold orefield, Yunnan Province, as starting materials, the melting experiments of lamprophyre + gold have been conducted under 1.5 and 3.0 GPa in a DS-29A cubic-type 3 600 t ultrahigh-pressure apparatus. The experimental results showed that gold powder (less than 0.045 mm) which even contributed in the samples be-展开更多
Lattice preferred orientations (LPO) of plagioclase and augite are measured on layered gabbro from the Panxi region, Sichuan Province. The LPO concentration [010] of plagioclase and [100] of augite are perpendicular t...Lattice preferred orientations (LPO) of plagioclase and augite are measured on layered gabbro from the Panxi region, Sichuan Province. The LPO concentration [010] of plagioclase and [100] of augite are perpendicular to the foliation, which indicates a kind of growth fabric associated with crystallizing habits of minerals when the magma is solidifying under the compaction. Calculated seismic velocities based on LPO data of minerals give rise to rather strong anisotropy 5.81% and 5.54% for compressional seismic wave (Vp) and shear seismic wave (Vs), respectively. The experiments at high temperature and high pressure show that the P-wave velocity of layered gabbro is 6.44-6.97 km/s with the maximum Vp anisotropy 5.22% and the Poisson's ratio is between 0.28-0.31. According to the comparison of fabrics with seismic velocities of layered gabbro, it is uggested that the large-scale layered intrusive body or the similar layered geological body may exist in the lower crust of this area. Such a layered intrusive body which has strong seismic anisotropy may be the seismic reflector in the lower crust.展开更多
文摘Modelling of migration and accumulation of elements Au and Ag in rocks under temperatures of 350–450°C and a confining pressure of 300 MPa and axial pressure of 100–150 MPa is conducted. It is found that the contents of gold and silver get higher in metallic sulphides such as pyrite, chalcopyrite and sphalerite as well as in quartz and muscovite, and get lower in chlorite, biotite, seriate, albite and calcite, showing that tectono-dynamics is one of the important factors for petrogenesis and metallogenesis.
文摘High temperature capacitance variance of multi-layer ceramic capacitor (MLCC) is researched.Combined with the characteristics of MLCC,the application of MLCC in fuze is proposed,and the temperature stability of MLCC is also discussed.The experimental results indicate that the capacitance of low frequency MLCC is largely affected by temperature.
文摘This experiment is to study the special resistant induced by the high-speed evaporation surrounding themoving high-temperature particles. An observable equipment was designed, in which the first 11 experiments wereperformed by pouring one or several Zirconia spheres with various high-temperature and a diameter of 3~ 10 mminto a water pool. The particles falling-down speeds were recorded by high-speed photographic instrumentation,and pressures and water temperatures were measured. A comparison between the experiments with cold and hotspheres respectively, employing three different sphere types each, was presented. The experimental data, com-pared with the theory of the evaporation drag model, are nearly identical.
基金financed by the Fund from the Ministry of Science and Technology of People’s Republic of China under the grant number XDB18000000Major State Research Development Program of China under Grant Nos.2016YFC0601101 and 2016YFC0600109
文摘Due to the important scientific significance of the interaction between alkaline feldspar and high-temperature and high-pressure fluids. We have conducted a series of autoclave experiments of feldspar dissolution and secondary mineral precipitation in conditions of 250–500℃, 8-50 MPa, and pH = 3.0 and 5.5. Based on the interaction experiments between alkaline feldspar and fluid of high-temperatures and high-pressures, we get the main results as follows:(1) The law that people have grasped below the critical point about the influence of temperature, pressure, and pH value on the alkaline feldspar dissolution behavior is still held above the critical point.(2) Due to the experimental techniques of autoclave flip 180°—sharp quenching and based on electron microprobe analysis of mineral new formed, theoretical analysis has determined that the new altered minerals distributed on the island dissolution surface of feldspar are products of precipitation on a feldspar surface after saturation of the relative ion concentration in water fluid.
基金project was jointly funded by the Funds for the program of the National Natural Science Foundation (Noes. 41572060, U1133602)Projects of YM Lab (2011)Innovation Team of Yunnan province and KMUST (2008,2012)
文摘1 Introduction In contrast,1experimental geochemistry is a young subject,but in recent years,the research on experiment of high temperature and high pressure has become an important branch in the parallel subjects of traditional mineralogy,petrology,geochemistry and geophysics.It is not only an important and essential way and window to understand geological processes in depth and geological
文摘As an experimental technique, it’s desired that the temperature in specimen is uniform in high temperature split Hopkinson pressure bar (SHPB) experiments. However, the temperature in specimen decreases and the temperature of bars increases when specimen starts to contact with bars, which induces the nonuniform temperature distribution in specimen, and may result in inac-curacy of experimental results. In this paper, the temperature distributions of specimen and bars in high temperature SHPB experiments were investigated while the specimen was heated alone. Firstly, the temperature history of specimen was measured at different initial temperatures by ex-periments, then simulation was carried out. Simulation results were consistent with experimental results by adjusting the thermal contact coefficient between specimen and bars. By this way, the thermal contact coefficient and simulation results were validated, and the proper cold contact times of specimen and bars in high temperature SHPB experiments were discussed. Finally, the results were compared with those in references.
基金supported jointly by the Innovation Program of the State Key Fundamental Research Program (2007CB411402)the Chinese Academy of Sciences (KZCX2-YW-111-3)
文摘With lamprophyre and pyrite from the Laowangzhai gold deposit, Yunnan Province, China, as starting materials, and at pressures from 1.5 to 3.0 GPa and temperatures from 1160 to 1560℃ , an experimental study was carried out on the liquid immiscibility of lamprophyre-sulfide melt at high temperature and ultra-high pressure in the DS-29A cubic 3600T/6-type high pressure apparatus. Results showed that the liquid immiscibility of lampro-pyre-sulfide melt in the magmatic system would happen during the early magmatic evolution (high temperature and high pressure conditions) and was controlled by temperature and pressure. The sulfide melt which was separated from the lamprophyric melt would make directional movement in the temperature and pressure field and assemble in the low-temperature and low-pressure region. Because the density of SM is higher than that of the lamprophyric melt, the former would gather together at the bottom of the magma chamber and there would exist a striking boundary between the two melts. On the other hand, the results also suggested that there would be little possibility for lampro-phyric magma to carry massive gold, and lamprophyres can't provide many of oreforming materials (Au) in the processes of gold mineralization.
基金partial financial support from Ballard Petroleum Holdings and Yangtze Universitythe Schooner Supercomputing from the University of Oklahomathe startup support from the University of Oklahoma。
文摘This work applied molecular dynamics(MD)simulation to calculate densities of natural gas mixtures at extremely high pressure(>138 MPa)and high temperature(>200℃)conditions(x HPHT)to bridge the knowledge and technical gaps between experiments and classical theories.The experimental data are scarce at these conditions which are also out of assumptions for classical predictive correlations,such as the Dranchuk&Abou-Kassem(DAK)equation of state(EOS).Force fields of natural gas components were carefully chosen from literatures and the simulation results are validated with experimental data.The largest relative error is 2.67%for pure hydrocarbons,2.99%for C1/C3 mixture,7.85%for C1/C4 mixture,and 8.47%for pure H2S.These satisfactory predictions demonstrate that the MD simulation approach is reliable to predict natural-and acid-gases thermodynamic properties.The validated model is further used to generate data for the study of the EOS with pressure up to 276 MPa and temperature up to 573 K.Our results also reveal that the Dranchuk&Abou-Kassem(DAK)EOS is capable of predicting natural gas compressibility to a satisfactory accuracy at x HPHT conditions,which extends the confidence range of the DAK EOS.
基金State Natural Science Foundation of China (10032040 and 49874013).
文摘Center for Analysis and Prediction, China Seismological Bureau, Beijing 100036, China 2) Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China
基金Key Program of Zhejiang Sports Bureau(2017(397)-09).
文摘Objective:To study the effect of training under high temperature on blood and heat shock protein 72(HSP72)expression of flying saucer athletes.Methods:The numbers of training group and control group are 30.Twenty-four flying saucer athletes in Zhejiang province were selected and randomly divided into training group and control group,15 in each group.Peripheral venous blood of each group was taken before and after the experiment.The HSP72 content of lymphocyte,blood routine and biochemical indexes were measured respectively.Results:There was significant difference in white blood cell in training group count before and after the experiment(P<0.05).The expression of HSP72 and the white blood cell in training group was higher than that control group(P<0.05).Conclusions:Organism could be affected and turned to stress state due to training under high temperature.It is necessary to provide the safeguard for the flying saucer athletes under high temperature in order to prevent the damage.
文摘The transitional pressure of quartz coesite under the differential stress and highly strained conditions is far from the pressure of the stable field under the static pressure. Therefore, the effect of the differential stress should be considered when the depth of petrogenesis is estimated about ultrahigh pressure metamorphic (UHPM) rocks. The rheological strength of typical ultrahigh pressure rocks in continental subduction zone was derived from the results of the laboratory experiments. The results indicate the following three points. (1) The rheological strength of gabbro, similar to that of eclogite, is smaller than that of clinopyroxenite on the same condition. (2) The calculated strength of rocks (gabbro, eclogite and clinopyroxenite) related to UHPM decreases by nearly one order of magnitude with the temperature rising by 100 ℃ in the range between 600 and 900 ℃. The calculated strength is far greater than the faulting strength of rocks at 600 ℃, and is in several hundred to more than one thousand mega pascals at 700-800 ℃, which suggests that those rocks are located in the brittle deformation region at 600 ℃, but are in the semi brittle to plastic deformation region at 700-800 ℃. Obviously, the 700 ℃ is a brittle plastic transition boundary. (3) The calculated rheological strength in the localized deformation zone on a higher strain rate condition (1.6×10 -12 s -l ) is 2-5 times more than that in the distributed deformation zone on a lower strain rate condition (1.6×10 -14 s -1 ). The average rheological stress (1 600 MPa) at the strain rate of 10 -12 s -1 stands for the ultimate differential stress of UHPM rocks in the semi brittle flow field, and the average rheological stress (550-950 MPa) at the strain rate of l0 -14 - 10 -13 s -l stands for the ultimate differential stress of UHPM rocks in the plastic flow field, suggesting that the depth for the formation of UHPM rocks is more than 20-60 km below the depth estimated under static pressure condition due to the effect of the differential stress.
基金supported by the National Natural Science Foundation of China(Grant Nos.41590623&41472040)the Fundamental Research Funds for the Central Universities+2 种基金China University of Geosciences(Grant No.CUGL150801)Special Fund from the State Key Laboratory of Geological Processes and Mineral ResourcesChina University of Geosciences(Grant No.MSFGPMR201408)
文摘Hydrous minerals are important water carriers in the crust and the mantle, especially in the subduction zone. With the recent development of the experimental technique, studies of the electrical conductivity of hydrous silicate minerals under controlled temperature, pressure and oxygen fugacity, have helped to constrain the water distribution in the Earth's interior. This paper introduces high pressure and temperature experimental study of electrical conductivity measurement of hydrous minerals such as serpentine, talc, brucite, phase A, super hydrous phase B and phase D, and assesses the data quality of the above minerals. The dehydration effect and the pressure effect on the bulk conductivity of the hydrous minerals are specifically emphasized. The conduction mechanism of hydrous minerals and the electrical structure of the subduction zone are discussed based on the available conductivity data. Finally, the potential research fields of the electrical conductivity of hydrous minerals is presented.
基金The work wassponsored by the Key Basic Research and Development Program (Grant No. G1998040800) the National Natural Science Foundation of China (Grant No. 40072062)+1 种基金 a grant form GeoForschungsZentrum in Germany for International Cooperation the F
文摘Here we present an insight into the genesis of Himalayan granulitic lower crust based on the experimental studies on the dehydration melting of natural biotite-plagioclase gneiss performed at the temperatures of 770-980°C and the pressures of 1.0-1.4 GPa. The experiments produce peraluminous granitic melt and residual phase assemblage (Pl+Qz+Gat+Bio+Opx±Cpx+Ilm/Rut±Kfs). The residual mineral assemblage is similar to those of granu-lites observed at the eastern and western Himalayan syntax-ises, and the chemical compositions of characteristic minerals-garnet and pyroxene in the residual phase and the granu-lite are identical. Additionally, the modeled wave velocities of the residual phase assemblage are comparable well with those of the top part of lower crust beneath Himalayas. Hence, we suggest that (1) the top part of lower crust beneath Himalayas is probably made up of garnet-bearing intermediate granulite; (2) the formations of granulite and leucogranites in Himalayas are interrelated as the
文摘By taking lamprophyres in the Laowangzhai gold orefield, Yunnan Province, as starting materials, the melting experiments of lamprophyre + gold have been conducted under 1.5 and 3.0 GPa in a DS-29A cubic-type 3 600 t ultrahigh-pressure apparatus. The experimental results showed that gold powder (less than 0.045 mm) which even contributed in the samples be-
基金This work was supported by the National Natural Science Foundation of China(Grant No.49633120)the Foundation of the Opened I aboratory of Constitution,Interaction and Dynamics of Crust-Mantle System,the Ministry of Land and Resources of China.
文摘Lattice preferred orientations (LPO) of plagioclase and augite are measured on layered gabbro from the Panxi region, Sichuan Province. The LPO concentration [010] of plagioclase and [100] of augite are perpendicular to the foliation, which indicates a kind of growth fabric associated with crystallizing habits of minerals when the magma is solidifying under the compaction. Calculated seismic velocities based on LPO data of minerals give rise to rather strong anisotropy 5.81% and 5.54% for compressional seismic wave (Vp) and shear seismic wave (Vs), respectively. The experiments at high temperature and high pressure show that the P-wave velocity of layered gabbro is 6.44-6.97 km/s with the maximum Vp anisotropy 5.22% and the Poisson's ratio is between 0.28-0.31. According to the comparison of fabrics with seismic velocities of layered gabbro, it is uggested that the large-scale layered intrusive body or the similar layered geological body may exist in the lower crust of this area. Such a layered intrusive body which has strong seismic anisotropy may be the seismic reflector in the lower crust.