期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Crack Initiation Mechanism of Z3CN20.09M Duplex Stainless Steel during Corrosion Fatigue in Water and Air at 290 °C 被引量:3
1
作者 H.C.Wu B.Yang +2 位作者 Y.Z.Shi Q.Gao Y.Q.Wang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2015年第11期1144-1150,共7页
The crack initiation mechanism of a Z3CN20.09M duplex stainless steel (DSS) during corrosion fatigue (CF) in water and air at 290 ℃ was investigated by using a CF cracking machine and a scanning electron microsco... The crack initiation mechanism of a Z3CN20.09M duplex stainless steel (DSS) during corrosion fatigue (CF) in water and air at 290 ℃ was investigated by using a CF cracking machine and a scanning electron microscopy (SEM). The cracks were initiated successively at the persistent stip bands (PSBs), phase boundaries (PBs) and pitting corrosion points (PCPs) of the specimens when they were tested in water at 290 ℃, while in airat 290 ℃ the cracks were only initiated at the PSBs and PBs. And the cracks were found mainly to initiate at the PSBs and PBs when the specimens were tested in water and air at 290 ℃, respectively. The results also reveal that the cracks were likely to be initiated at the first 20% of fatigue life of the specimens tested in water at 290 ℃. However, the cracks were not found until 50% of fatigue life when tested in air at 290 ℃. Moreover, the crack numbers of the specimens tested in water at 290 ℃ were much more than those tested in air at 290 ℃. 展开更多
关键词 Duplex stainless steel Corrosion fatigue Crack initiation high temperature water
原文传递
Thermal fatigue behavior of K125L superalloy 被引量:2
2
作者 Li-Kui Ning Zhi Zheng +4 位作者 Feng-Quan An Song Tang Jian Tong Hui-Si Ji Hui-Wen Yu 《Rare Metals》 SCIE EI CAS CSCD 2016年第2期172-176,共5页
The thermal fatigue behavior of K125 L superalloy at the peak temperature of 1,050 °C was investigated by optical microscope(OM), X-ray diffraction(XRD), and scanning electron microscope(SEM). The experimen... The thermal fatigue behavior of K125 L superalloy at the peak temperature of 1,050 °C was investigated by optical microscope(OM), X-ray diffraction(XRD), and scanning electron microscope(SEM). The experimental results show that the crack initiation sites of tested alloys are at the V-notch tip and the V-notch tip propagates by way of continuous cracking along grain boundaries. The formation of high-temperature oxides and MC carbides accelerates the crack propagation, and no secondary carbides precipitate out. Oxides between cracks are mainly the Al2O3 as well as Cr_2O_3, and carbides are Ta-rich and Tirich MC carbides. 展开更多
关键词 K125L superalloy Thermal fatigue high temperature oxidation Carbides
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部