The perovskite type rare earth iron complex (REIC) oxide La 1-x Ce xFeO 3 is designed and prepared as water gas shift catalyst. Activity evaluation and heat resisting test show that the perovskite type compounds La 1-...The perovskite type rare earth iron complex (REIC) oxide La 1-x Ce xFeO 3 is designed and prepared as water gas shift catalyst. Activity evaluation and heat resisting test show that the perovskite type compounds La 1-x Ce xFeO 3(·K) has a good thermal stability if x is less than or equal to 0.5 . But when x is greater than 0.5 , La 1-x Ce xFeO 3(·K) will turn out to be ceria and magnetite partially or completely at high temperature in the shift reaction atmosphere. In the case of x=0.5, the conversion of carbon monoxide is about 68% at 530 ℃. Potassium can greatly improve the low temperature activity, but slightly lower the high temperature activity, and has little impact on the thermal stability. La 0.5 Ce 0.5 FeO 3 (·K) is a promising chromium free high temperature shift catalyst.展开更多
文摘The perovskite type rare earth iron complex (REIC) oxide La 1-x Ce xFeO 3 is designed and prepared as water gas shift catalyst. Activity evaluation and heat resisting test show that the perovskite type compounds La 1-x Ce xFeO 3(·K) has a good thermal stability if x is less than or equal to 0.5 . But when x is greater than 0.5 , La 1-x Ce xFeO 3(·K) will turn out to be ceria and magnetite partially or completely at high temperature in the shift reaction atmosphere. In the case of x=0.5, the conversion of carbon monoxide is about 68% at 530 ℃. Potassium can greatly improve the low temperature activity, but slightly lower the high temperature activity, and has little impact on the thermal stability. La 0.5 Ce 0.5 FeO 3 (·K) is a promising chromium free high temperature shift catalyst.