With the increasing spotlight in electric vehicles,there is a growing demand for high-energy-density batteries to enhance driving range.Consequently,several studies have been conducted on high-energy-density LiNi_(x)C...With the increasing spotlight in electric vehicles,there is a growing demand for high-energy-density batteries to enhance driving range.Consequently,several studies have been conducted on high-energy-density LiNi_(x)Co_(y)Mn_(z)O_(2)cathodes.However,there is a limit to permanent performance deterioration because of side reactions caused by moisture in the atmosphere and continuous microcracks during cycling as the Ni content to express high energy increases and the content of Mn and Co that maintain structural and electrochemical stabilization decreases.The direct modification of the surface and bulk regions aims to enhance the capacity and long-term performance of high-Ni cathode materials.Therefore,an efficient modification requires a study based on a thorough understanding of the degradation mechanisms in the surface and bulk region.In this review,a comprehensive analysis of various modifications,including doping,coating,concentration gradient,and single crystals,is conducted to solve degradation issues along with an analysis of the overall degradation mechanism occurring in high-Ni cathode materials.It also summarizes recent research developments related to the following modifications,aims to provide notable points and directions for post-studies,and provides valuable references for the commercialization of stable high-energy-density cathode materials.展开更多
The high compacted density LiNi<sub>0.5-x</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub>Mg<sub>x</sub>O<sub>2</sub> cathode material for lithium-ion batteries was syn...The high compacted density LiNi<sub>0.5-x</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub>Mg<sub>x</sub>O<sub>2</sub> cathode material for lithium-ion batteries was synthesized by high temperature solid-state method, taking the Mg element as a doping element and the spherical Ni<sub>0.5</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub> (OH)<sub>2</sub>, Li<sub>2</sub>CO<sub>3</sub> as raw materials. The effects of calcination temperature on the structure and properties of the products were investigated. The structure and morphology of cathode materials powder were analyzed by X-ray diffraction spectroscopy (XRD) and scanning electronmicroscopy (SEM). The electrochemical properties of the cathode materials were studied by charge-discharge test and cyclic properties test. The results show that LiNi<sub>0.4985</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub> Mg<sub>0.0015</sub>O<sub>2</sub> cathode material prepared at calcination temperature 930°C has a good layered structure, and the compacted density of the electrode sheet is above 3.68 g/cm<sup>3</sup>. The discharge capacity retention rate is more than 97.5% after 100 cycles at a charge-discharge rate of 1C, displaying a good cyclic performance.展开更多
High-entropy materials(HEMs)have better mechanical,thermal,and electrical properties than traditional materials due to their special"high entropy effect".They can also adjust the performance of high entropy ...High-entropy materials(HEMs)have better mechanical,thermal,and electrical properties than traditional materials due to their special"high entropy effect".They can also adjust the performance of high entropy ceramics by adjusting the proportion of raw materials,and have broad application prospects in many fields.This article provides a review of the high entropy effect,preparation methods,and main applications of high entropy ceramic materials,especially exploring relevant research on high entropy perovskite ceramics.It is expected to provide reference for the promotion of scientific research and the development of further large-scale applications of high-entropy ceramic materials.展开更多
Lithium sulfur batteries(LSBs)are recognized as promising devices for developing next-generation energy storage systems.In addition,they are attractive rechargeable battery systems for replacing lithium-ion batteries(...Lithium sulfur batteries(LSBs)are recognized as promising devices for developing next-generation energy storage systems.In addition,they are attractive rechargeable battery systems for replacing lithium-ion batteries(LIBs)for commercial use owing to their higher theoretical energy density and lower cost compared to those of LIBs.However,LSBs are still beset with some persistent issues that prevent them from being used industrially,such as the unavoidable dissolution of lithium polysulfide intermediates during electrochemical reactions and large volume expansion(up to 80%)upon the formation of Li_(2)S,resulting in serious battery life and safety limitations.In the process of solving these problems,it is necessary to maintain a high sulfur content in the cathode materials to ensure that the LSBs have high energy densities and excellent cycle performance.In this review,the novel preparation methods and cathode materials used for preparing LSBs in recent years are reviewed considering the sulfur content and cycle performance.In addition,the problems and difficulties in practically applying cathode materials are described,and the development trend is discussed.展开更多
Molecular crystals are complex systems exhibiting various crystal structures,and accurately modeling the crystal structures is essential for understanding their physical behaviors under high pressure.Here,we perform a...Molecular crystals are complex systems exhibiting various crystal structures,and accurately modeling the crystal structures is essential for understanding their physical behaviors under high pressure.Here,we perform an extensive structure search of ternary carbon-nitrogen-oxygen(CNO)compound under high pressure with the CALYPSO method and first principles calculations,and successfully identify three polymeric CNO compounds with Pbam,C2/m and I4m2symmetries under 100 GPa.More interestingly,these structures are also dynamically stable at ambient pressure,and are potential high energy density materials(HEDMs).The energy densities of Pbam,C2/m and I4m2 phases of CNO are about2.30 kJ/g,1.37 kJ/g and 2.70 kJ/g,respectively,with the decompositions of graphitic carbon and molecular carbon dioxide andα-N(molecular N_(2))at ambient pressure.The present results provide in-depth insights into the structural evolution and physical properties of CNO compounds under high pressures,which offer crucial insights for designs and syntheses of novel HEDMs.展开更多
Integrated computational materials engineering(ICME)is to integrate multi-scale computational simulations and key experimental methods such as macroscopic,mesoscopic,and microscopic into the whole process of Al alloys...Integrated computational materials engineering(ICME)is to integrate multi-scale computational simulations and key experimental methods such as macroscopic,mesoscopic,and microscopic into the whole process of Al alloys design and development,which enables the design and development of Al alloys to upgrade from traditional empirical to the integration of compositionprocess-structure-mechanical property,thus greatly accelerating its development speed and reducing its development cost.This study combines calculation of phase diagram(CALPHAD),Finite element calculations,first principle calculations,and microstructure characterization methods to predict and regulate the formation and structure of composite precipitates from the design of highmodulus Al alloy compositions and optimize the casting process parameters to inhibit the formation of micropore defects in the casting process,and the final tensile strength of Al alloys reaches420 MPa and Young's modulus reaches more than 88 GPa,which achieves the design goal of the high strength and modulus Al alloys,and establishes a new mode of the design and development of the strength/modulus Al alloys.展开更多
Based on the status quo of political education in high school,current affairs and politics materials are utilized as an example in this paper to analyze and discuss the value of the proper use of current affairs and p...Based on the status quo of political education in high school,current affairs and politics materials are utilized as an example in this paper to analyze and discuss the value of the proper use of current affairs and politics materials in high school political classroom teaching.In addition,the paper also discusses the principles that should be adhered to in selecting materials for use in political classroom teaching.The purpose of this article is to provide guidelines to high school political subject teachers in selecting and applying the current affairs and politics materials reasonably.展开更多
High-energy lithium-sulfur batteries(LSBs)have experienced relentless development over the past decade with discernible improvements in electrochemical performance.However,a scrutinization of the cell operation condit...High-energy lithium-sulfur batteries(LSBs)have experienced relentless development over the past decade with discernible improvements in electrochemical performance.However,a scrutinization of the cell operation conditions reveals a huge gap between the demands for practical batteries and those in the literature.Low sulfur loading,a high electrolyte/sulfur(E/S)ratio and excess anodes for lab-scale LSBs significantly offset their high-energy merit.To approach practical LSBs,high loading and lean electrolyte parameters are needed,which involve budding challenges of slow charge transfer,polysulfide precipitation and severe shuttle effects.To track these obstacles,the exploration of electrocatalysts to immobilize polysulfides and accelerate Li-S redox kinetics has been widely reported.Herein,this review aims to survey state-of-the-art catalytic materials for practical LSBs with emphasis on elucidating the correlation among catalyst design strategies,material structures and electrochemical performance.We also statistically evaluate the state-of-the-art catalyst-modified LSBs to identify the remaining discrepancy between the current advancements and the real-world requirements.In closing,we put forward our proposal for a catalytic material study to help realize practical LSBs.展开更多
Permanent magnetic materials capable of operating at high temperature up to 500℃ have wide potential applications in fields such as aeronautics, space, and electronic cars. SmCo alloys are candidates for high tempera...Permanent magnetic materials capable of operating at high temperature up to 500℃ have wide potential applications in fields such as aeronautics, space, and electronic cars. SmCo alloys are candidates for high temperature applications, since they have large magnetocrystalline anisotropy field (6-30 T), high Curie temperature (720-920℃), and large energy product (〉200 kJ.m-3) at room temperature. However, the highest service temperature of commercial 2:17 type SmCo magnets is only 300℃, and many efforts have been devoted to develop novel high temperature permanent magnets. This review focuses on the development of three kinds of SmCo based magnets: 2:17 type SmCo magnets, nanocrystalline SmCo magnets, and nanocomposite SmCo magnets. The oxidation protection, including alloying and surface modification, of high temperature permanent magnets is discussed as well.展开更多
A simplified model was proposed targeting at the isotropic high porosity metal materials with well distributed structure. From the model the mathematical relationship between elongation and porosity was deduced for th...A simplified model was proposed targeting at the isotropic high porosity metal materials with well distributed structure. From the model the mathematical relationship between elongation and porosity was deduced for those materials, and the relationship formula was derived generally for actual high porosity metals at last, whose validity is supported by the representative experiment on a nickel foam prepared by electrodeposition. A simplified model was proposed targeting at the isotropic high porosity metal materials with well distributed structure. From the model the mathematical relationship between elongation and porosity was deduced for those materials, and the relationship formula was derived generally for actual high porosity metals at last, whose validity is supported by the representative experiment on a nickel foam prepared by electrodeposition.展开更多
How the wave propagation analysis plays a key role in the studies of dynamic response of materials at high strain rates is analyzed. For the wave propagation technique, the followings are important: the loading and un...How the wave propagation analysis plays a key role in the studies of dynamic response of materials at high strain rates is analyzed. For the wave propagation technique, the followings are important: the loading and unloading constitutive relation presumed, the positions of the sensors embedded, the interactions between loading waves and unloading waves. For the split Hopkinson pressure bar (SHPB) technique, the assumption of one-dimensional stress wave propagation and the assumption of stress uniformity along the specimen should be satisfied. When the larger diameter bars are employed, the wave dispersion effects should be considered, including the high frequency oscillations, non-uniform stress distribution across the bar section, increase of rise time, and amplitude attenuation. The stress uniformity along the specimen is influenced by the reflection times in specimen, the wave impedance ratio of the specimen and the bar, and the waveform.展开更多
Exploring high ion/electron conductive olivine-type transition metal phosphates is of vital significance to broaden their applicability in rapid-charging devices.Herein,we report an interface engineered Li Fe0.5Mn0.5P...Exploring high ion/electron conductive olivine-type transition metal phosphates is of vital significance to broaden their applicability in rapid-charging devices.Herein,we report an interface engineered Li Fe0.5Mn0.5PO4/rGO@C cathode material by the synergistic effects of r GO and polydopamine-derived N-doped carbon.The well-distributed Li Fe0.5Mn0.5PO4nanoparticles are tightly anchored on r GO nanosheet benefited by the coating of N-doped carbon layer.The design of such an architecture can effectively suppress the agglomeration of nanoparticles with a shortened Li+transfer path.Meantime,the high-speed conducting network has been constructed by r GO and N-doped carbon,which exhibits the face-to-face contact with Li Fe0.5Mn0.5PO4nanoparticles,guaranteeing the rapid electron transfer.These profits endow the Li Fe0.5Mn0.5PO4/rGO@C hybrids with a fast charge-discharge ability,e.g.a high reversible capacity of 105 m Ah·g^-1at 10 C,much higher than that of the Li Fe0.5Mn0.5PO4@C nanoparticles(46 mA·h·g^-1).Furthermore,a 90.8%capacity retention can be obtained even after cycling 500 times at 2 C.This work gives a new avenue to fabricate transition metal phosphate with superior electrochemical performance for high-power Li-ion batteries.展开更多
High lattice match growth of InAsSb based materials on GaSb substrates is demonstrated. The present results indicate that a stable substrate temperature and the optimal flux ratios are of critical importance in achiev...High lattice match growth of InAsSb based materials on GaSb substrates is demonstrated. The present results indicate that a stable substrate temperature and the optimal flux ratios are of critical importance in achieving a homogeneous InAsSb based material composition throughout the growth period. The quality of these epilayers is assessed using a high-resolution x-ray diffraction and atomic force microscope. The mismatch between the GaSb substrate and InAsSb alloy achieves almost zero, and the rms surface roughness of InAsSb alloy achieves around 1.7A over an area of 28μm × 28μm. At the same time, the mismatches between GaSb and InAs/InAs0.73Sb0.27 superlattices (SLs) achieve approximately 100 arcsec (75 periods) and zero (300 periods), with the surface rms roughnesses of InAs/InAs0.73Sb0.27 SLs around 1.8 A (75 periods) and 2.1A (300 periods) over an area of 20 μm×20 μm, respectively. After fabrication and characterization of the devices, the dynamic resistance of the n-barrier-n InAsSb photodetector near zero bias is of the order of 10^6Ω·cm^2. At 77K, the positive-intrinsic-negative photodetectors are demonstrated in InAsSb and InAs/InAsSb SL (75 periods) materials, exhibiting fifty-percent cutoff wavelengths of 3.8μm and 5.1μm, respectively.展开更多
In order to improve the high-temperature performance of mullite ceramic materials,mullite ceramic bodies were placed in closed containers with AlF_(3)·3H_(2)O powder and kept at 1 600 ℃ for 6 h.AlF_(3)·3H_(...In order to improve the high-temperature performance of mullite ceramic materials,mullite ceramic bodies were placed in closed containers with AlF_(3)·3H_(2)O powder and kept at 1 600 ℃ for 6 h.AlF_(3)·3H_(2)O reacts with O_(2) to produce gaseous compounds AlOF and F,which penetrate into the bodies,promote Al2O3 and SiO_(2) to form mullite whiskers,and strengthen the mullite ceramic materials.The results show that the mullite ceramics have enhanced hot strength,increased bulk density and declined apparent porosity by adding a certain amount of AlF_(3)·3H_(2)O in a closed container.When the addition of AlF_(3)·3H_(2)O is 6%,the bulk density of the ceramic material reaches the maximum and the apparent porosity is the lowest;and when the addition of AlF_(3)·3H_(2)O is 8%,the hot strength of the material is the highest.展开更多
This talk will summarize the recent work related to a kind of new nanomaterials produced by the SMAT (surface mechanical attrition treatment).The concept of surface nanocrystallization of materials will be presented.I...This talk will summarize the recent work related to a kind of new nanomaterials produced by the SMAT (surface mechanical attrition treatment).The concept of surface nanocrystallization of materials will be presented.In terms of the grain refinement mechanism induced by plastic deformation,a novel surface mechanical attrition(SMA) technique was developed for synthesizing a nanostructured surface layer on metallic materials in order to upgrade the overall properties and performance.The grain refinement mechanism of the surface layer during the SMA treatment will be analyzed in terms of the nanostructure observations in several typical materials.Very high yield stress(5 times of the base material) on the surface layer of the material obtained by the SMAT has been observed.The effect of surface nanostructures on the mechanical behavior and on the failure mechanism of metallic material shows the possibility to develop a new strength gradient composite using co-rolling and nitriding.The role of residual stress induced during the treatment will be investigated and discussed.The developed materials are also porosity free materials which can be used as reference material for the local mechanical behavior investigation technique such as the nanoindentation.A general concept for obtaining high strength and high ductility nanostructured materials will be presented.The exceptional high strength and high ductility steels have developed.The simulation of the mechanisms for improving ductility of high strength nanostructured materials will be presented.The potential applications for the land transportation vehicles(car,bus,train) and wind energy have been investigated.Some examples of concept design for the integration of the advanced nanostructured steels will be presented.展开更多
B4C, SiC and C, Cu functionally graded-materials (FGMs) have been developed by plasma spraying and hot pressing. Their high-heat flux properties have been investigated by high energy laser and electron beam for the si...B4C, SiC and C, Cu functionally graded-materials (FGMs) have been developed by plasma spraying and hot pressing. Their high-heat flux properties have been investigated by high energy laser and electron beam for the simulation of plasma disruption process of the future fusion reactors, And a study on eroded products of B4C/Cu FGM under transient thermal load of electron beam was performed. In the experiment, SEM and EDS analysis indicated that B4C and SiC were decomposed, carbon was preferentially evaporated under high thermal load, and a part of Si and Cu were melted, in addition, the splash of melted metal and the particle emission of brittle destruction were also found. Different erosive behaviors of carbon-based materials (CBMs) caused by laser and electron beam were also discussed.展开更多
The response of three-dimensional sample of Al, containing vacancy complex, under shear loading was simulated. The molecular dynamics method was used and interaction between atoms was described on the base of pseudopo...The response of three-dimensional sample of Al, containing vacancy complex, under shear loading was simulated. The molecular dynamics method was used and interaction between atoms was described on the base of pseudopotential theory Solitary waves were generated in the sample under mechanical loading. Their interaction with the vacancy complexes was shown to be able to initiate hot spot in that local region of the complexes. Some parameters of the hot spot as well as solitary waves were calculated. The initiation of the hot spot is accompanied with sufficient local structural relaxation.展开更多
MatCloud provides a high-throughput computational materials infrastructure for the integrated management of materials simulation, data, and computing resources. In comparison to AFLOW, Material Project, and NoMad, Mat...MatCloud provides a high-throughput computational materials infrastructure for the integrated management of materials simulation, data, and computing resources. In comparison to AFLOW, Material Project, and NoMad, MatCloud delivers two-fold functionalities: a computational materials platform where users can do on-line job setup, job submission and monitoring only via Web browser, and a materials properties simulation database. It is developed under Chinese Materials Genome Initiative and is a China own proprietary high-throughput computational materials infrastructure. MatCloud has been on line for about one year, receiving considerable registered users, feedbacks, and encouragements. Many users provided valuable input and requirements to MatCloud. In this paper, we describe the present MatCloud, future visions, and major challenges. Based on what we have achieved, we will endeavour to further develop MatCloud in an open and collaborative manner and make MatCloud a world known China-developed novel software in the pressing area of high-throughput materials calculations and materials properties simulation database within Material Genome Initiative.展开更多
文摘With the increasing spotlight in electric vehicles,there is a growing demand for high-energy-density batteries to enhance driving range.Consequently,several studies have been conducted on high-energy-density LiNi_(x)Co_(y)Mn_(z)O_(2)cathodes.However,there is a limit to permanent performance deterioration because of side reactions caused by moisture in the atmosphere and continuous microcracks during cycling as the Ni content to express high energy increases and the content of Mn and Co that maintain structural and electrochemical stabilization decreases.The direct modification of the surface and bulk regions aims to enhance the capacity and long-term performance of high-Ni cathode materials.Therefore,an efficient modification requires a study based on a thorough understanding of the degradation mechanisms in the surface and bulk region.In this review,a comprehensive analysis of various modifications,including doping,coating,concentration gradient,and single crystals,is conducted to solve degradation issues along with an analysis of the overall degradation mechanism occurring in high-Ni cathode materials.It also summarizes recent research developments related to the following modifications,aims to provide notable points and directions for post-studies,and provides valuable references for the commercialization of stable high-energy-density cathode materials.
文摘The high compacted density LiNi<sub>0.5-x</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub>Mg<sub>x</sub>O<sub>2</sub> cathode material for lithium-ion batteries was synthesized by high temperature solid-state method, taking the Mg element as a doping element and the spherical Ni<sub>0.5</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub> (OH)<sub>2</sub>, Li<sub>2</sub>CO<sub>3</sub> as raw materials. The effects of calcination temperature on the structure and properties of the products were investigated. The structure and morphology of cathode materials powder were analyzed by X-ray diffraction spectroscopy (XRD) and scanning electronmicroscopy (SEM). The electrochemical properties of the cathode materials were studied by charge-discharge test and cyclic properties test. The results show that LiNi<sub>0.4985</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub> Mg<sub>0.0015</sub>O<sub>2</sub> cathode material prepared at calcination temperature 930°C has a good layered structure, and the compacted density of the electrode sheet is above 3.68 g/cm<sup>3</sup>. The discharge capacity retention rate is more than 97.5% after 100 cycles at a charge-discharge rate of 1C, displaying a good cyclic performance.
文摘High-entropy materials(HEMs)have better mechanical,thermal,and electrical properties than traditional materials due to their special"high entropy effect".They can also adjust the performance of high entropy ceramics by adjusting the proportion of raw materials,and have broad application prospects in many fields.This article provides a review of the high entropy effect,preparation methods,and main applications of high entropy ceramic materials,especially exploring relevant research on high entropy perovskite ceramics.It is expected to provide reference for the promotion of scientific research and the development of further large-scale applications of high-entropy ceramic materials.
基金the National Natural Science Foundation of China(52103093)the Young Elite Scientists Sponsorship Program by China Association for Science and Technology(2021QNRC001)+2 种基金the Jiangxi Provincial Natural Science Foundation(20212BAB214048)Science and Technology Support Project of Shangrao(2020L009,2021J006)Science and Technological Project of Education Department of Jiangxi(GJJ211704)for funding their contributions to this paper。
文摘Lithium sulfur batteries(LSBs)are recognized as promising devices for developing next-generation energy storage systems.In addition,they are attractive rechargeable battery systems for replacing lithium-ion batteries(LIBs)for commercial use owing to their higher theoretical energy density and lower cost compared to those of LIBs.However,LSBs are still beset with some persistent issues that prevent them from being used industrially,such as the unavoidable dissolution of lithium polysulfide intermediates during electrochemical reactions and large volume expansion(up to 80%)upon the formation of Li_(2)S,resulting in serious battery life and safety limitations.In the process of solving these problems,it is necessary to maintain a high sulfur content in the cathode materials to ensure that the LSBs have high energy densities and excellent cycle performance.In this review,the novel preparation methods and cathode materials used for preparing LSBs in recent years are reviewed considering the sulfur content and cycle performance.In addition,the problems and difficulties in practically applying cathode materials are described,and the development trend is discussed.
基金the National Natural Science Foundation of China(Grant Nos.12174352 and 12111530103)the Fundamental Research Funds for the Central UniversitiesChina University of Geosciences(Wuhan)(Grant No.G1323523065)。
文摘Molecular crystals are complex systems exhibiting various crystal structures,and accurately modeling the crystal structures is essential for understanding their physical behaviors under high pressure.Here,we perform an extensive structure search of ternary carbon-nitrogen-oxygen(CNO)compound under high pressure with the CALYPSO method and first principles calculations,and successfully identify three polymeric CNO compounds with Pbam,C2/m and I4m2symmetries under 100 GPa.More interestingly,these structures are also dynamically stable at ambient pressure,and are potential high energy density materials(HEDMs).The energy densities of Pbam,C2/m and I4m2 phases of CNO are about2.30 kJ/g,1.37 kJ/g and 2.70 kJ/g,respectively,with the decompositions of graphitic carbon and molecular carbon dioxide andα-N(molecular N_(2))at ambient pressure.The present results provide in-depth insights into the structural evolution and physical properties of CNO compounds under high pressures,which offer crucial insights for designs and syntheses of novel HEDMs.
基金supported by the National Natural Science Foundation of China(No.52073030)。
文摘Integrated computational materials engineering(ICME)is to integrate multi-scale computational simulations and key experimental methods such as macroscopic,mesoscopic,and microscopic into the whole process of Al alloys design and development,which enables the design and development of Al alloys to upgrade from traditional empirical to the integration of compositionprocess-structure-mechanical property,thus greatly accelerating its development speed and reducing its development cost.This study combines calculation of phase diagram(CALPHAD),Finite element calculations,first principle calculations,and microstructure characterization methods to predict and regulate the formation and structure of composite precipitates from the design of highmodulus Al alloy compositions and optimize the casting process parameters to inhibit the formation of micropore defects in the casting process,and the final tensile strength of Al alloys reaches420 MPa and Young's modulus reaches more than 88 GPa,which achieves the design goal of the high strength and modulus Al alloys,and establishes a new mode of the design and development of the strength/modulus Al alloys.
文摘Based on the status quo of political education in high school,current affairs and politics materials are utilized as an example in this paper to analyze and discuss the value of the proper use of current affairs and politics materials in high school political classroom teaching.In addition,the paper also discusses the principles that should be adhered to in selecting materials for use in political classroom teaching.The purpose of this article is to provide guidelines to high school political subject teachers in selecting and applying the current affairs and politics materials reasonably.
基金supported by grants from the Research Grants Council of the Hong Kong Special Administrative Region,China(Poly U25216121,Poly U15303219)the National Natural Science Foundation of China for Young Scholar(52102310)the Research Committee of the Hong Kong Polytechnic University(A-PB1 M,1-BBXK,1-CD4 M,and G-UAMV)。
文摘High-energy lithium-sulfur batteries(LSBs)have experienced relentless development over the past decade with discernible improvements in electrochemical performance.However,a scrutinization of the cell operation conditions reveals a huge gap between the demands for practical batteries and those in the literature.Low sulfur loading,a high electrolyte/sulfur(E/S)ratio and excess anodes for lab-scale LSBs significantly offset their high-energy merit.To approach practical LSBs,high loading and lean electrolyte parameters are needed,which involve budding challenges of slow charge transfer,polysulfide precipitation and severe shuttle effects.To track these obstacles,the exploration of electrocatalysts to immobilize polysulfides and accelerate Li-S redox kinetics has been widely reported.Herein,this review aims to survey state-of-the-art catalytic materials for practical LSBs with emphasis on elucidating the correlation among catalyst design strategies,material structures and electrochemical performance.We also statistically evaluate the state-of-the-art catalyst-modified LSBs to identify the remaining discrepancy between the current advancements and the real-world requirements.In closing,we put forward our proposal for a catalytic material study to help realize practical LSBs.
基金supported by the National Natural Science Foundation of China (Nos. 51071010 and 50925101)the Innovation Foundation of Beihang University for Ph.D. Graduates
文摘Permanent magnetic materials capable of operating at high temperature up to 500℃ have wide potential applications in fields such as aeronautics, space, and electronic cars. SmCo alloys are candidates for high temperature applications, since they have large magnetocrystalline anisotropy field (6-30 T), high Curie temperature (720-920℃), and large energy product (〉200 kJ.m-3) at room temperature. However, the highest service temperature of commercial 2:17 type SmCo magnets is only 300℃, and many efforts have been devoted to develop novel high temperature permanent magnets. This review focuses on the development of three kinds of SmCo based magnets: 2:17 type SmCo magnets, nanocrystalline SmCo magnets, and nanocomposite SmCo magnets. The oxidation protection, including alloying and surface modification, of high temperature permanent magnets is discussed as well.
文摘A simplified model was proposed targeting at the isotropic high porosity metal materials with well distributed structure. From the model the mathematical relationship between elongation and porosity was deduced for those materials, and the relationship formula was derived generally for actual high porosity metals at last, whose validity is supported by the representative experiment on a nickel foam prepared by electrodeposition. A simplified model was proposed targeting at the isotropic high porosity metal materials with well distributed structure. From the model the mathematical relationship between elongation and porosity was deduced for those materials, and the relationship formula was derived generally for actual high porosity metals at last, whose validity is supported by the representative experiment on a nickel foam prepared by electrodeposition.
文摘How the wave propagation analysis plays a key role in the studies of dynamic response of materials at high strain rates is analyzed. For the wave propagation technique, the followings are important: the loading and unloading constitutive relation presumed, the positions of the sensors embedded, the interactions between loading waves and unloading waves. For the split Hopkinson pressure bar (SHPB) technique, the assumption of one-dimensional stress wave propagation and the assumption of stress uniformity along the specimen should be satisfied. When the larger diameter bars are employed, the wave dispersion effects should be considered, including the high frequency oscillations, non-uniform stress distribution across the bar section, increase of rise time, and amplitude attenuation. The stress uniformity along the specimen is influenced by the reflection times in specimen, the wave impedance ratio of the specimen and the bar, and the waveform.
基金supported by the National Natural Science Foundation of China(21975074,91534202,and 91834301)the Shanghai Scientific and Technological Innovation Project(18JC1410500)the Fundamental Research Funds for the Central Universities(222201718002)。
文摘Exploring high ion/electron conductive olivine-type transition metal phosphates is of vital significance to broaden their applicability in rapid-charging devices.Herein,we report an interface engineered Li Fe0.5Mn0.5PO4/rGO@C cathode material by the synergistic effects of r GO and polydopamine-derived N-doped carbon.The well-distributed Li Fe0.5Mn0.5PO4nanoparticles are tightly anchored on r GO nanosheet benefited by the coating of N-doped carbon layer.The design of such an architecture can effectively suppress the agglomeration of nanoparticles with a shortened Li+transfer path.Meantime,the high-speed conducting network has been constructed by r GO and N-doped carbon,which exhibits the face-to-face contact with Li Fe0.5Mn0.5PO4nanoparticles,guaranteeing the rapid electron transfer.These profits endow the Li Fe0.5Mn0.5PO4/rGO@C hybrids with a fast charge-discharge ability,e.g.a high reversible capacity of 105 m Ah·g^-1at 10 C,much higher than that of the Li Fe0.5Mn0.5PO4@C nanoparticles(46 mA·h·g^-1).Furthermore,a 90.8%capacity retention can be obtained even after cycling 500 times at 2 C.This work gives a new avenue to fabricate transition metal phosphate with superior electrochemical performance for high-power Li-ion batteries.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11474248,61176127,61006085,61274013 and 61306013the Key Program for International S&T Cooperation Projects of China under Grant No 2011DFA62380the Ph.D. Programs Foundation of the Ministry of Education of China under Grant No 20105303120002
文摘High lattice match growth of InAsSb based materials on GaSb substrates is demonstrated. The present results indicate that a stable substrate temperature and the optimal flux ratios are of critical importance in achieving a homogeneous InAsSb based material composition throughout the growth period. The quality of these epilayers is assessed using a high-resolution x-ray diffraction and atomic force microscope. The mismatch between the GaSb substrate and InAsSb alloy achieves almost zero, and the rms surface roughness of InAsSb alloy achieves around 1.7A over an area of 28μm × 28μm. At the same time, the mismatches between GaSb and InAs/InAs0.73Sb0.27 superlattices (SLs) achieve approximately 100 arcsec (75 periods) and zero (300 periods), with the surface rms roughnesses of InAs/InAs0.73Sb0.27 SLs around 1.8 A (75 periods) and 2.1A (300 periods) over an area of 20 μm×20 μm, respectively. After fabrication and characterization of the devices, the dynamic resistance of the n-barrier-n InAsSb photodetector near zero bias is of the order of 10^6Ω·cm^2. At 77K, the positive-intrinsic-negative photodetectors are demonstrated in InAsSb and InAs/InAsSb SL (75 periods) materials, exhibiting fifty-percent cutoff wavelengths of 3.8μm and 5.1μm, respectively.
基金supported by the National Natural Science Foundation of ChinaKey Projects of Henan United Fund(NSFCNo.U1904217).
文摘In order to improve the high-temperature performance of mullite ceramic materials,mullite ceramic bodies were placed in closed containers with AlF_(3)·3H_(2)O powder and kept at 1 600 ℃ for 6 h.AlF_(3)·3H_(2)O reacts with O_(2) to produce gaseous compounds AlOF and F,which penetrate into the bodies,promote Al2O3 and SiO_(2) to form mullite whiskers,and strengthen the mullite ceramic materials.The results show that the mullite ceramics have enhanced hot strength,increased bulk density and declined apparent porosity by adding a certain amount of AlF_(3)·3H_(2)O in a closed container.When the addition of AlF_(3)·3H_(2)O is 6%,the bulk density of the ceramic material reaches the maximum and the apparent porosity is the lowest;and when the addition of AlF_(3)·3H_(2)O is 8%,the hot strength of the material is the highest.
文摘This talk will summarize the recent work related to a kind of new nanomaterials produced by the SMAT (surface mechanical attrition treatment).The concept of surface nanocrystallization of materials will be presented.In terms of the grain refinement mechanism induced by plastic deformation,a novel surface mechanical attrition(SMA) technique was developed for synthesizing a nanostructured surface layer on metallic materials in order to upgrade the overall properties and performance.The grain refinement mechanism of the surface layer during the SMA treatment will be analyzed in terms of the nanostructure observations in several typical materials.Very high yield stress(5 times of the base material) on the surface layer of the material obtained by the SMAT has been observed.The effect of surface nanostructures on the mechanical behavior and on the failure mechanism of metallic material shows the possibility to develop a new strength gradient composite using co-rolling and nitriding.The role of residual stress induced during the treatment will be investigated and discussed.The developed materials are also porosity free materials which can be used as reference material for the local mechanical behavior investigation technique such as the nanoindentation.A general concept for obtaining high strength and high ductility nanostructured materials will be presented.The exceptional high strength and high ductility steels have developed.The simulation of the mechanisms for improving ductility of high strength nanostructured materials will be presented.The potential applications for the land transportation vehicles(car,bus,train) and wind energy have been investigated.Some examples of concept design for the integration of the advanced nanostructured steels will be presented.
文摘B4C, SiC and C, Cu functionally graded-materials (FGMs) have been developed by plasma spraying and hot pressing. Their high-heat flux properties have been investigated by high energy laser and electron beam for the simulation of plasma disruption process of the future fusion reactors, And a study on eroded products of B4C/Cu FGM under transient thermal load of electron beam was performed. In the experiment, SEM and EDS analysis indicated that B4C and SiC were decomposed, carbon was preferentially evaporated under high thermal load, and a part of Si and Cu were melted, in addition, the splash of melted metal and the particle emission of brittle destruction were also found. Different erosive behaviors of carbon-based materials (CBMs) caused by laser and electron beam were also discussed.
文摘The response of three-dimensional sample of Al, containing vacancy complex, under shear loading was simulated. The molecular dynamics method was used and interaction between atoms was described on the base of pseudopotential theory Solitary waves were generated in the sample under mechanical loading. Their interaction with the vacancy complexes was shown to be able to initiate hot spot in that local region of the complexes. Some parameters of the hot spot as well as solitary waves were calculated. The initiation of the hot spot is accompanied with sufficient local structural relaxation.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2017YFB0701702 and 2016YFB0700501)the National Natural Science Foundation of China(Grant Nos.61472394 and 11534012)Science and Technology Department of Sichuan Province,China(Grant No.2017JZ0001)
文摘MatCloud provides a high-throughput computational materials infrastructure for the integrated management of materials simulation, data, and computing resources. In comparison to AFLOW, Material Project, and NoMad, MatCloud delivers two-fold functionalities: a computational materials platform where users can do on-line job setup, job submission and monitoring only via Web browser, and a materials properties simulation database. It is developed under Chinese Materials Genome Initiative and is a China own proprietary high-throughput computational materials infrastructure. MatCloud has been on line for about one year, receiving considerable registered users, feedbacks, and encouragements. Many users provided valuable input and requirements to MatCloud. In this paper, we describe the present MatCloud, future visions, and major challenges. Based on what we have achieved, we will endeavour to further develop MatCloud in an open and collaborative manner and make MatCloud a world known China-developed novel software in the pressing area of high-throughput materials calculations and materials properties simulation database within Material Genome Initiative.