A special method is proposed of a laser-induced cavity pressure acceleration scheme for collimating,accelerating and guiding protons,using a single-cone target with a beam collimator through a target normal sheath acc...A special method is proposed of a laser-induced cavity pressure acceleration scheme for collimating,accelerating and guiding protons,using a single-cone target with a beam collimator through a target normal sheath acceleration mechanism.In addition,the problems involved are studied by using two-dimensional particle-in-cell simulations.The results show that the proton beam can be collimated,accelerated and guided effectively through this type of target.Theoretically,a formula is derived for the combined electric field of accelerating protons.Compared with a proton beam without a beam collimator,the proton beam density and cut-off energy of protons in the type II are increased by 3.3 times and 10%respectively.Detailed analysis shows that the enhancement is mainly due to the compact and strong sheath electrostatic field,and that the beam collimator plays a role in focusing energy.In addition,the simulation results show that the divergence angle of the proton beam in type II is less than 1.67 times that of type I.The more prominent point is that the proton number of type II is 2.2 times higher than that of type I.This kind of target has important applications in many fields,such as fast ion ignition in inertial fusion,high energy physics and proton therapy.展开更多
提出了统计声学能量流(statistical acoustic energy flow,SAEF)方法,将不同物理场的激励耦合后加载到高铁SAEF模型上,计算车外激励与车内声场及车内声腔之间的声能流动,可分析车内全频噪声.首先,采用刚性多体动力学、快速多极边界元...提出了统计声学能量流(statistical acoustic energy flow,SAEF)方法,将不同物理场的激励耦合后加载到高铁SAEF模型上,计算车外激励与车内声场及车内声腔之间的声能流动,可分析车内全频噪声.首先,采用刚性多体动力学、快速多极边界元和大涡模拟提取了350,km/h下的轮轨力/二系悬挂力、轮轨噪声和空气动力噪声,并且这些激励通过了参考文献试验的验证.其次,搭建了车厢有限元模型,基于多点激励-多点响应技术验证了车厢仿真模态,证明了整体的车厢及区域的铝型材-内饰组合板的精度,间接保证了基于模态特性的组合板隔声量的准确度.最后,搭建了SAEF模型,加载耦合激励并定义组合板隔声性能后,计算了350,km/h下、0~4,000,Hz内的车内噪声.对比车内中心声腔的仿真与试验声压级,结果显示两者的变化趋势基本一致,声压级总值相差2.6,d B(A),符合工程要求,验证了SAEF方法应用于高铁车内全频噪声研究的可行性.展开更多
文摘A special method is proposed of a laser-induced cavity pressure acceleration scheme for collimating,accelerating and guiding protons,using a single-cone target with a beam collimator through a target normal sheath acceleration mechanism.In addition,the problems involved are studied by using two-dimensional particle-in-cell simulations.The results show that the proton beam can be collimated,accelerated and guided effectively through this type of target.Theoretically,a formula is derived for the combined electric field of accelerating protons.Compared with a proton beam without a beam collimator,the proton beam density and cut-off energy of protons in the type II are increased by 3.3 times and 10%respectively.Detailed analysis shows that the enhancement is mainly due to the compact and strong sheath electrostatic field,and that the beam collimator plays a role in focusing energy.In addition,the simulation results show that the divergence angle of the proton beam in type II is less than 1.67 times that of type I.The more prominent point is that the proton number of type II is 2.2 times higher than that of type I.This kind of target has important applications in many fields,such as fast ion ignition in inertial fusion,high energy physics and proton therapy.
文摘提出了统计声学能量流(statistical acoustic energy flow,SAEF)方法,将不同物理场的激励耦合后加载到高铁SAEF模型上,计算车外激励与车内声场及车内声腔之间的声能流动,可分析车内全频噪声.首先,采用刚性多体动力学、快速多极边界元和大涡模拟提取了350,km/h下的轮轨力/二系悬挂力、轮轨噪声和空气动力噪声,并且这些激励通过了参考文献试验的验证.其次,搭建了车厢有限元模型,基于多点激励-多点响应技术验证了车厢仿真模态,证明了整体的车厢及区域的铝型材-内饰组合板的精度,间接保证了基于模态特性的组合板隔声量的准确度.最后,搭建了SAEF模型,加载耦合激励并定义组合板隔声性能后,计算了350,km/h下、0~4,000,Hz内的车内噪声.对比车内中心声腔的仿真与试验声压级,结果显示两者的变化趋势基本一致,声压级总值相差2.6,d B(A),符合工程要求,验证了SAEF方法应用于高铁车内全频噪声研究的可行性.