Measurement of out-of-plane deformation is significant to understanding of the deflection mechanisms of the plate and tube structures.In this study,a new surface contouring technique with color structured light is app...Measurement of out-of-plane deformation is significant to understanding of the deflection mechanisms of the plate and tube structures.In this study,a new surface contouring technique with color structured light is applied to measure the out-of-plane deformation of structures with one-shot projection.Through color fringe recognizing,decoding and triangulation processing for the captured images corresponding to each deformation state,the feasibility of the method is testified by the measurement of elastic deflections of a flexible square plate,showing good agreement with those from the calibrated displacement driver.The plastic deformation of two alloy aluminum rectangular tubes is measured to show the technique application to surface topographic evaluation of the buckling structures with large displacements.展开更多
Geometries, energies, and vibrational frequencies for two C4N12O4 isomers with pagodane- and isopagodane-like structures have been calculated at the B3LYP/6-31G* level.Isomers 1 and 2 are of D2h and D2d symmetry, res...Geometries, energies, and vibrational frequencies for two C4N12O4 isomers with pagodane- and isopagodane-like structures have been calculated at the B3LYP/6-31G* level.Isomers 1 and 2 are of D2h and D2d symmetry, respectively. Heats of formation for the two C4N12O4 isomers have been estimated in this paper, indicating they would be reasonable candidates for high energy density materials.展开更多
A new one-dimensional Mn(Ⅱ) complex, [MnL2(bipy)(H2O)2]n 1, has been obtained by the reaction of MnCl2·4H2O, 2,2'-bipyridine (bipy) and 1-(4-phenoxyacetate)-5-thioacetatetetrazole (H2L). The crystal...A new one-dimensional Mn(Ⅱ) complex, [MnL2(bipy)(H2O)2]n 1, has been obtained by the reaction of MnCl2·4H2O, 2,2'-bipyridine (bipy) and 1-(4-phenoxyacetate)-5-thioacetatetetrazole (H2L). The crystal crystallizes in the triclinic system, space group Pi with a = 7.6088(2), b = 12.2795(2), c = 13.6617(3)A, α = 75.416(2), β =79.264(2), γ = 74.271(2)°, V = 1179.48(4) A3, Z = 2, Mr = 555.43, F(000) = 570, Dc = 1.564 g/cm^3, μ = 0.704 mm^-1, the final R = 0.0454 and wR = 0.0849 for 3127 observed reflections (Ⅰ〉 2σ(Ⅰ)). The Mn(Ⅱ) is six-coordinated by two water molecules, two N atoms from bipy and two carboxylate O atoms from two L^2- to form a distorted octahedral geometry. Each L^2- ligand serves as a bridging ligand to link two Mn(Ⅱ) atoms, leading to a single-strand zigzag coordination polymer. Hydrogen-bonding interactions between adjacent chains as well as π-π stacking interactions extend the complex into a three-dimensional supramolecular architecture. Moreover, the title compound emits strong red fluorescent light (λem(max) = 610 nm) in EtOH solution.展开更多
A new mononuclear Co(Ⅱ) complex, [Co(hmz)2(H2O)4]·2H2O, has been synthesized by the reaction of Co(CH3COO)2·4H2O with 1-(4-hydroxyphenyl)-5-mercaptotetrazole (Hhmz). It crystallizes in the monoc...A new mononuclear Co(Ⅱ) complex, [Co(hmz)2(H2O)4]·2H2O, has been synthesized by the reaction of Co(CH3COO)2·4H2O with 1-(4-hydroxyphenyl)-5-mercaptotetrazole (Hhmz). It crystallizes in the monoclinic system, space group P21/n with a = 13.502(5), b = 6.718(3), c = 13.972(6) A, β = 117.532(4)°, V = 1123.9(8) A^3, Z = 2, M r = 553.45, F(000) = 570, Dc = 1.635 g/cm^3, μ = 1.008 mm^-1, the final R = 0.0272 and wR = 0.0684 for 2194 observed reflections (Ⅰ〉 2σ(Ⅰ)). The Co(Ⅱ) is six-coordinated by two nitrogen atoms from two hmz^-1 ligands and four water molecules, forming an octahedral geometry. The intermolecular hydrogen bonding and offset-panel π-π stacking interactions between the adjacent molecules extend the compound into a three- dimensional supramolecular framework. The title compound emits strong blue fluorescent light (λem(max) = 427 nm) at room temperature and is red-shifted compared with free ligand Hhmz (λem(max) = 342 nm).展开更多
An advance Li-sphere possessing a definitely regular morphology in Li deposition enables a well-defined more robust structure and superior solid-electrolyte interphase(SEI)to achieve high-efficiency long-term cycles i...An advance Li-sphere possessing a definitely regular morphology in Li deposition enables a well-defined more robust structure and superior solid-electrolyte interphase(SEI)to achieve high-efficiency long-term cycles in Li metal anode.Here,a new sight of high Li^(+)cluster-like solvation sheaths coordinated in a localized high-concentration NO_(3)^(-)(LH-LiNO_(3))electrolyte fully clarifies for depositing advanced Li spheres.Moreover,we elucidate a critical amorphouscrystalline phase transition in the nanostructure evolution of Li-sphere deposits during the nucleation and growth.Li-sphere anode exhibits ultrastable structural engineering for suppressing Li dendrite growths and rendering ultralong life of 4000 cycles in symmetrical cells at 2 mAcm^(-2).The as-constructed Li spheres/3DCMjLiFePO_(4)(LFP)full cell delivers a high capacity retention of 90.5%at 1 C after 1000 cycles,and a robust dendrite-free structure also stably exists in Li-sphere anode.Combined with high-loading LFP cathodes(6.6 and 10.9 mg cm^(-2)),superb capacity retentions are up to 96.5%and 92.5%after 800 cycles at 1 C,respectively.Cluster-like solvation sheaths with high Li^(+)coordination exert significant influence on depositing a highquality Li-sphere anode.展开更多
This paper focuses on an estimation of light weighting opportunities for the frame structure of com- mercial road vehicles. This estimation is based on simpli- fied static load cases which play a predominant role for ...This paper focuses on an estimation of light weighting opportunities for the frame structure of com- mercial road vehicles. This estimation is based on simpli- fied static load cases which play a predominant role for the dimensioning of a frame structure and therefore these simplifications are not putting the general validity of the conclusions into question. A comparison of different ma- terials under this scenario shows that light metals do not show any weight reduction advantage in comparison to steel while a material-independent topology optimization has more weight reduction potential for the frame structure than a simple change of materials. Considering the con- straints of part complexity which is directly linked with production and assembly cost, the ladder frame structure has become the current state of the art design. Thus the paper also puts a spotlight on basic rules of node design and vertical load induction in order to keep the weight of such a design as low as possible. Practical examples from manufacturers show that the weight of a commercial vehicle could be reduced by 10%, and main parts of the frame structure could be reduced by 30% using high strength steel in combination with innovative production methods like roll forming.展开更多
The electronic structure characters are calculated for the Zn1-∞MxO alloys with some Zn atoms in ZnO substituted by 3d transition-metal atoms (M), in order to find out which of these alloys could provide an interme...The electronic structure characters are calculated for the Zn1-∞MxO alloys with some Zn atoms in ZnO substituted by 3d transition-metal atoms (M), in order to find out which of these alloys could provide an intermediate band material used for fabricating high efficiency solar cell. Especially, among of these alloys, the electronic structure character and optical performance of Zn1-xCr∞ 0 alloys clearly show an intermediate band filled partially and isolated from the VB and the CB in energy band structure of ZnO host, and the intermediate band characters can be preserved with increasing Cr concentrations no more than 8.33% in Zn1-xCrxO alloys, at the same time, the ratio 0.52 of Eg^FC to EVE in Zn1-xCrxO, (x = 4.16%) alloy is closest to the optimal ratio of 0,57. Besides, compared to the ZnO, the optical absorption does indicate a great improved absorption below the calculated band gap of the ZnO and an enhancement of the optical absorption in the whole solar spectral energy range.展开更多
By X-ray diffraction and high pressure Mossbauer spectroscopy, the structure and the hyperfine parameters of Ni substituted γ-Fe4N were investigated. The results of X-ray diffraction indicate that single phase γ’-(...By X-ray diffraction and high pressure Mossbauer spectroscopy, the structure and the hyperfine parameters of Ni substituted γ-Fe4N were investigated. The results of X-ray diffraction indicate that single phase γ’-(Fe1-xNix)4N compounds can be prepared in the composition range of 0≤x≤0.6, and with the increase of Ni content the lattice parameter is fit for the relationship a0(x) = 3.790 5-0.021 57x-0.031 67x2. By high pressure Mossbauer spectra, effects of magnetovolume and chemical bonding of Ni atom on hyperfine magnetic field and isomer shift of iron were distinguished for the first time, and their composition dependences for different lattice sites were studied simultaneously. It is found that the magnetovolume and chemical bonding have different influences on the properties of γ’-(Fe1-xNix)4N, and the latter one plays a key role in the property changes of γ-(Fe1-xNix)4N.展开更多
文摘Measurement of out-of-plane deformation is significant to understanding of the deflection mechanisms of the plate and tube structures.In this study,a new surface contouring technique with color structured light is applied to measure the out-of-plane deformation of structures with one-shot projection.Through color fringe recognizing,decoding and triangulation processing for the captured images corresponding to each deformation state,the feasibility of the method is testified by the measurement of elastic deflections of a flexible square plate,showing good agreement with those from the calibrated displacement driver.The plastic deformation of two alloy aluminum rectangular tubes is measured to show the technique application to surface topographic evaluation of the buckling structures with large displacements.
基金This work was supported by the Natural Science Foundation of Shandong Province (Y2002G11)
文摘Geometries, energies, and vibrational frequencies for two C4N12O4 isomers with pagodane- and isopagodane-like structures have been calculated at the B3LYP/6-31G* level.Isomers 1 and 2 are of D2h and D2d symmetry, respectively. Heats of formation for the two C4N12O4 isomers have been estimated in this paper, indicating they would be reasonable candidates for high energy density materials.
基金supported by the Natural Science Foundation of Zhejiang Province (No. Y406355)
文摘A new one-dimensional Mn(Ⅱ) complex, [MnL2(bipy)(H2O)2]n 1, has been obtained by the reaction of MnCl2·4H2O, 2,2'-bipyridine (bipy) and 1-(4-phenoxyacetate)-5-thioacetatetetrazole (H2L). The crystal crystallizes in the triclinic system, space group Pi with a = 7.6088(2), b = 12.2795(2), c = 13.6617(3)A, α = 75.416(2), β =79.264(2), γ = 74.271(2)°, V = 1179.48(4) A3, Z = 2, Mr = 555.43, F(000) = 570, Dc = 1.564 g/cm^3, μ = 0.704 mm^-1, the final R = 0.0454 and wR = 0.0849 for 3127 observed reflections (Ⅰ〉 2σ(Ⅰ)). The Mn(Ⅱ) is six-coordinated by two water molecules, two N atoms from bipy and two carboxylate O atoms from two L^2- to form a distorted octahedral geometry. Each L^2- ligand serves as a bridging ligand to link two Mn(Ⅱ) atoms, leading to a single-strand zigzag coordination polymer. Hydrogen-bonding interactions between adjacent chains as well as π-π stacking interactions extend the complex into a three-dimensional supramolecular architecture. Moreover, the title compound emits strong red fluorescent light (λem(max) = 610 nm) in EtOH solution.
文摘A new mononuclear Co(Ⅱ) complex, [Co(hmz)2(H2O)4]·2H2O, has been synthesized by the reaction of Co(CH3COO)2·4H2O with 1-(4-hydroxyphenyl)-5-mercaptotetrazole (Hhmz). It crystallizes in the monoclinic system, space group P21/n with a = 13.502(5), b = 6.718(3), c = 13.972(6) A, β = 117.532(4)°, V = 1123.9(8) A^3, Z = 2, M r = 553.45, F(000) = 570, Dc = 1.635 g/cm^3, μ = 1.008 mm^-1, the final R = 0.0272 and wR = 0.0684 for 2194 observed reflections (Ⅰ〉 2σ(Ⅰ)). The Co(Ⅱ) is six-coordinated by two nitrogen atoms from two hmz^-1 ligands and four water molecules, forming an octahedral geometry. The intermolecular hydrogen bonding and offset-panel π-π stacking interactions between the adjacent molecules extend the compound into a three- dimensional supramolecular framework. The title compound emits strong blue fluorescent light (λem(max) = 427 nm) at room temperature and is red-shifted compared with free ligand Hhmz (λem(max) = 342 nm).
基金National Key Research and Development Program of China,Grant/Award Numbers:2021YFB2400401,2017YFA0204702National Natural Science Foundation of China,Grant/Award Numbers:21673008,21927901,21821004。
文摘An advance Li-sphere possessing a definitely regular morphology in Li deposition enables a well-defined more robust structure and superior solid-electrolyte interphase(SEI)to achieve high-efficiency long-term cycles in Li metal anode.Here,a new sight of high Li^(+)cluster-like solvation sheaths coordinated in a localized high-concentration NO_(3)^(-)(LH-LiNO_(3))electrolyte fully clarifies for depositing advanced Li spheres.Moreover,we elucidate a critical amorphouscrystalline phase transition in the nanostructure evolution of Li-sphere deposits during the nucleation and growth.Li-sphere anode exhibits ultrastable structural engineering for suppressing Li dendrite growths and rendering ultralong life of 4000 cycles in symmetrical cells at 2 mAcm^(-2).The as-constructed Li spheres/3DCMjLiFePO_(4)(LFP)full cell delivers a high capacity retention of 90.5%at 1 C after 1000 cycles,and a robust dendrite-free structure also stably exists in Li-sphere anode.Combined with high-loading LFP cathodes(6.6 and 10.9 mg cm^(-2)),superb capacity retentions are up to 96.5%and 92.5%after 800 cycles at 1 C,respectively.Cluster-like solvation sheaths with high Li^(+)coordination exert significant influence on depositing a highquality Li-sphere anode.
文摘This paper focuses on an estimation of light weighting opportunities for the frame structure of com- mercial road vehicles. This estimation is based on simpli- fied static load cases which play a predominant role for the dimensioning of a frame structure and therefore these simplifications are not putting the general validity of the conclusions into question. A comparison of different ma- terials under this scenario shows that light metals do not show any weight reduction advantage in comparison to steel while a material-independent topology optimization has more weight reduction potential for the frame structure than a simple change of materials. Considering the con- straints of part complexity which is directly linked with production and assembly cost, the ladder frame structure has become the current state of the art design. Thus the paper also puts a spotlight on basic rules of node design and vertical load induction in order to keep the weight of such a design as low as possible. Practical examples from manufacturers show that the weight of a commercial vehicle could be reduced by 10%, and main parts of the frame structure could be reduced by 30% using high strength steel in combination with innovative production methods like roll forming.
基金Supported by the State Key Program for Basic Research of China under Grant No.2006CB921803Project of High Technology Research&Development of China(Project No.2007AA03Z404)+1 种基金National Natural Science Foundation of China under Grant Nos.61274058,60990312,and 61025020Natural Science Foundation of Anhui Province under Grant No.1208085QF116
文摘The electronic structure characters are calculated for the Zn1-∞MxO alloys with some Zn atoms in ZnO substituted by 3d transition-metal atoms (M), in order to find out which of these alloys could provide an intermediate band material used for fabricating high efficiency solar cell. Especially, among of these alloys, the electronic structure character and optical performance of Zn1-xCr∞ 0 alloys clearly show an intermediate band filled partially and isolated from the VB and the CB in energy band structure of ZnO host, and the intermediate band characters can be preserved with increasing Cr concentrations no more than 8.33% in Zn1-xCrxO alloys, at the same time, the ratio 0.52 of Eg^FC to EVE in Zn1-xCrxO, (x = 4.16%) alloy is closest to the optimal ratio of 0,57. Besides, compared to the ZnO, the optical absorption does indicate a great improved absorption below the calculated band gap of the ZnO and an enhancement of the optical absorption in the whole solar spectral energy range.
基金Project supported by the National Natural Science Foundation of China,the Natural Science Fund of Gansu Province and the Postdoctoral Fund of China.
文摘By X-ray diffraction and high pressure Mossbauer spectroscopy, the structure and the hyperfine parameters of Ni substituted γ-Fe4N were investigated. The results of X-ray diffraction indicate that single phase γ’-(Fe1-xNix)4N compounds can be prepared in the composition range of 0≤x≤0.6, and with the increase of Ni content the lattice parameter is fit for the relationship a0(x) = 3.790 5-0.021 57x-0.031 67x2. By high pressure Mossbauer spectra, effects of magnetovolume and chemical bonding of Ni atom on hyperfine magnetic field and isomer shift of iron were distinguished for the first time, and their composition dependences for different lattice sites were studied simultaneously. It is found that the magnetovolume and chemical bonding have different influences on the properties of γ’-(Fe1-xNix)4N, and the latter one plays a key role in the property changes of γ-(Fe1-xNix)4N.