The diffusion coefficient of natural gas in foamy oil is one of the key parameters to evaluate the feasibility of gas injection for enhanced oil recovery in foamy oil reservoirs. In this paper, a PVT cell was used to ...The diffusion coefficient of natural gas in foamy oil is one of the key parameters to evaluate the feasibility of gas injection for enhanced oil recovery in foamy oil reservoirs. In this paper, a PVT cell was used to measure diffusion coefficients of natural gas in Venezuela foamy oil at high pressures, and a new method for deter- mining the diffusion coefficient in the foamy oil was de- veloped on the basis of experimental data. The effects of pressure and the types of the liquid phase on the diffusion coefficient of the natural gas were discussed. The results indicate that the diffusion coefficients of natural gas in foamy oil, saturated oil, and dead oil increase linearly with increasing pressure. The diffusion coefficient of natural gas in the foamy oil at 20 MPa was 2.93 times larger than that at 8.65 MPa. The diffusion coefficient of the natural gas in dead oil was 3.02 and 4.02 times than that of the natural gas in saturated oil and foamy oil when the pressure was 20 MPa. However, the gas content of foamy oil was 16.9 times higher than that of dead oil when the dissolution time and pressure were 20 MPa and 35.22 h, respectively.展开更多
This paper presents a computational model for the fluid dynamics in a fractured ductile pipe under high pressure. The pressure profile in front of the crack tip, which is the driving source of crack propagation, is co...This paper presents a computational model for the fluid dynamics in a fractured ductile pipe under high pressure. The pressure profile in front of the crack tip, which is the driving source of crack propagation, is computed using a nonlinear wave equation. The solution is coupled with a one dimensional choked flow analysis behind the crack. The simulation utilizes a high order optimized prefactored compact-finite volume method in space, and low dispersion and dissipation Runge-Kutta in time. As the pipe fractures the rapid depressurization take place inside the pipe and the propagation of the crack-induced waves strongly influences the outflow dynamics. Consistent with the experimental observation, the model predicts the expansion wave inside the pipe, and the reflection and outflow of the wave. The model also helps characterize the propagation of the crack dynamics and fluid flows around the tip of the crack.展开更多
An elusive phenomenon is observed in previous investigations on dynamic fracture that the dynamic fracture toughness (DFT) of high strength metals always increases with the loading rate on the order of TPa.m1/2.s-1....An elusive phenomenon is observed in previous investigations on dynamic fracture that the dynamic fracture toughness (DFT) of high strength metals always increases with the loading rate on the order of TPa.m1/2.s-1. For the purpose of verification, variation of DFT with the loading rate for two high strength steels commonly used in the aviation industry, 30CrMnSiA and 40Cr, is studied in this work. Results of the experiments are compared, which were conducted on the modified split Hopkinson pressure bar (SHPB) apparatus, with striker velocities ranging from 9.2 to 24.1 m/s and a constant value of 16.3 m/s for 30CrMnSiA and 40Cr, respectively. It is observed that for 30CrMnSiA, the crack tip loading rate increases with the increase of the striker velocity, while the fracture initiation time and the DFT simultaneously decrease. However, in the tests of 40Cr, there is also an increasing tendency of DFT, similar to other reports. Through an in-depth investigation on the relationship between the dynamic stress intensity factor (DSIF) and the loading rate, it is concluded that the generally increasing tendency in previous studies could be false, which is induced from a limited striker velocity domain and the errors existing in the experimental and numerical processes. To disclose the real dependency of DFT on the loading rate, experimentsneed to be performed in a comparatively large striker velocity range.展开更多
Accident at Fukushima Dai-ichi nuclear power plant significantly affected the nuclear industry at time when everybody was expecting the so called nuclear renaissance. There is no question that the accident has at leas...Accident at Fukushima Dai-ichi nuclear power plant significantly affected the nuclear industry at time when everybody was expecting the so called nuclear renaissance. There is no question that the accident has at least slowed it down. Research on this accident is taking place all over the world, in this paper, we present the findings of research on Fukushima nuclear power plant accident in relation to the Czech Republic. The paper focuses on the analysis of human performance during the accident. Lessons learned from the accident and main human errors are presented. First, the brief factors affecting the human performance are discussed. They are followed by the short description of activities on units 1-3. The key human errors in the accident mitigation are then identified. On unit 1, the fuel damage was probably impossible to prevent, however, on units 2 and 3, it could be probably prevented.展开更多
C\-3N\-4 crystals with the size of several micrometers have been synthesized from C\-3N\-4H\-4 in the presence of nickel\|based alloy or cobalt as catalyst under high pressure of 7 GPa and temperature of about 1400℃ ...C\-3N\-4 crystals with the size of several micrometers have been synthesized from C\-3N\-4H\-4 in the presence of nickel\|based alloy or cobalt as catalyst under high pressure of 7 GPa and temperature of about 1400℃ for 10 min. Scanning electron microscopy, energy\|disperse X\|ray analysis, and X\|ray diffraction were used to examine the grown crystals. The general rule on selecting the starting materials for synthesis of carbon nitride crystals at high pressures and high temperatures is suggested.展开更多
基金financial support from the Major Subject of National Science and Technology (2011ZX05032-001)the Fundamental Research Funds for the Central Universities(NO.11CX06022A)
文摘The diffusion coefficient of natural gas in foamy oil is one of the key parameters to evaluate the feasibility of gas injection for enhanced oil recovery in foamy oil reservoirs. In this paper, a PVT cell was used to measure diffusion coefficients of natural gas in Venezuela foamy oil at high pressures, and a new method for deter- mining the diffusion coefficient in the foamy oil was de- veloped on the basis of experimental data. The effects of pressure and the types of the liquid phase on the diffusion coefficient of the natural gas were discussed. The results indicate that the diffusion coefficients of natural gas in foamy oil, saturated oil, and dead oil increase linearly with increasing pressure. The diffusion coefficient of natural gas in the foamy oil at 20 MPa was 2.93 times larger than that at 8.65 MPa. The diffusion coefficient of the natural gas in dead oil was 3.02 and 4.02 times than that of the natural gas in saturated oil and foamy oil when the pressure was 20 MPa. However, the gas content of foamy oil was 16.9 times higher than that of dead oil when the dissolution time and pressure were 20 MPa and 35.22 h, respectively.
文摘This paper presents a computational model for the fluid dynamics in a fractured ductile pipe under high pressure. The pressure profile in front of the crack tip, which is the driving source of crack propagation, is computed using a nonlinear wave equation. The solution is coupled with a one dimensional choked flow analysis behind the crack. The simulation utilizes a high order optimized prefactored compact-finite volume method in space, and low dispersion and dissipation Runge-Kutta in time. As the pipe fractures the rapid depressurization take place inside the pipe and the propagation of the crack-induced waves strongly influences the outflow dynamics. Consistent with the experimental observation, the model predicts the expansion wave inside the pipe, and the reflection and outflow of the wave. The model also helps characterize the propagation of the crack dynamics and fluid flows around the tip of the crack.
基金supported by the 111 Project (B07050)the National Natural Science Foundation of China (10932008)
文摘An elusive phenomenon is observed in previous investigations on dynamic fracture that the dynamic fracture toughness (DFT) of high strength metals always increases with the loading rate on the order of TPa.m1/2.s-1. For the purpose of verification, variation of DFT with the loading rate for two high strength steels commonly used in the aviation industry, 30CrMnSiA and 40Cr, is studied in this work. Results of the experiments are compared, which were conducted on the modified split Hopkinson pressure bar (SHPB) apparatus, with striker velocities ranging from 9.2 to 24.1 m/s and a constant value of 16.3 m/s for 30CrMnSiA and 40Cr, respectively. It is observed that for 30CrMnSiA, the crack tip loading rate increases with the increase of the striker velocity, while the fracture initiation time and the DFT simultaneously decrease. However, in the tests of 40Cr, there is also an increasing tendency of DFT, similar to other reports. Through an in-depth investigation on the relationship between the dynamic stress intensity factor (DSIF) and the loading rate, it is concluded that the generally increasing tendency in previous studies could be false, which is induced from a limited striker velocity domain and the errors existing in the experimental and numerical processes. To disclose the real dependency of DFT on the loading rate, experimentsneed to be performed in a comparatively large striker velocity range.
文摘Accident at Fukushima Dai-ichi nuclear power plant significantly affected the nuclear industry at time when everybody was expecting the so called nuclear renaissance. There is no question that the accident has at least slowed it down. Research on this accident is taking place all over the world, in this paper, we present the findings of research on Fukushima nuclear power plant accident in relation to the Czech Republic. The paper focuses on the analysis of human performance during the accident. Lessons learned from the accident and main human errors are presented. First, the brief factors affecting the human performance are discussed. They are followed by the short description of activities on units 1-3. The key human errors in the accident mitigation are then identified. On unit 1, the fuel damage was probably impossible to prevent, however, on units 2 and 3, it could be probably prevented.
文摘C\-3N\-4 crystals with the size of several micrometers have been synthesized from C\-3N\-4H\-4 in the presence of nickel\|based alloy or cobalt as catalyst under high pressure of 7 GPa and temperature of about 1400℃ for 10 min. Scanning electron microscopy, energy\|disperse X\|ray analysis, and X\|ray diffraction were used to examine the grown crystals. The general rule on selecting the starting materials for synthesis of carbon nitride crystals at high pressures and high temperatures is suggested.