On the basis of realization of beach information and its differentiating of high-resolution remote sensing image on coastal zone, extracting objects are carried through RS multi-scale diagnostic analysis, and fast inf...On the basis of realization of beach information and its differentiating of high-resolution remote sensing image on coastal zone, extracting objects are carried through RS multi-scale diagnostic analysis, and fast information extraction methods and key technologies are put forward. Meanwhile image segmentation methods are set forth for objects of coastal zone. And through the application of Otsu2D to the segmentation of water area and dock and the applying of Gabor filter to the separation and extraction of construction, some typical applications of high-resolution RS image are presented in the field of coastal zone surface objects' recognition. Quantizing high-resolution RS information on the coastal zone proved to be of great scientific and practical significance for coastal development and management.展开更多
The exploration of building detection plays an important role in urban planning,smart city and military.Aiming at the problem of high overlapping ratio of detection frames for dense building detection in high resoluti...The exploration of building detection plays an important role in urban planning,smart city and military.Aiming at the problem of high overlapping ratio of detection frames for dense building detection in high resolution remote sensing images,we present an effective YOLOv3 framework,corner regression-based YOLOv3(Correg-YOLOv3),to localize dense building accurately.This improved YOLOv3 algorithm establishes a vertex regression mechanism and an additional loss item about building vertex offsets relative to the center point of bounding box.By extending output dimensions,the trained model is able to output the rectangular bounding boxes and the building vertices meanwhile.Finally,we evaluate the performance of the Correg-YOLOv3 on our self-produced data set and provide a comparative analysis qualitatively and quantitatively.The experimental results achieve high performance in precision(96.45%),recall rate(95.75%),F1 score(96.10%)and average precision(98.05%),which were 2.73%,5.4%,4.1%and 4.73%higher than that of YOLOv3.Therefore,our proposed algorithm effectively tackles the problem of dense building detection in high resolution images.展开更多
This paper introduces some of the image processing techniques developed in the Canada Research Chair in Advanced Geomatics Image Processing Laboratory (CRC-AGIP Lab) and in the Department of Geodesy and Geomatics Engi...This paper introduces some of the image processing techniques developed in the Canada Research Chair in Advanced Geomatics Image Processing Laboratory (CRC-AGIP Lab) and in the Department of Geodesy and Geomatics Engineering (GGE) at the University of New Brunswick (UNB), Canada. The techniques were developed by innovatively/“smartly” utilizing the characteristics of the available very high resolution optical remote sensing images to solve important problems or create new applications in photogrammetry and remote sensing. The techniques to be introduced are: automated image fusion (UNB-PanSharp), satellite image online mapping, street view technology, moving vehicle detection using single set satellite imagery, supervised image segmentation, image matching in smooth areas, and change detection using images from different viewing angles. Because of their broad application potential, some of the techniques have made a global impact, and some have demonstrated the potential for a global impact.展开更多
Some studies about road vector map change detection were done in this paper. Firstly, on the basis of old road vector data, the original high resolution remote sensing image was cut into segments. Then, gray analysis ...Some studies about road vector map change detection were done in this paper. Firstly, on the basis of old road vector data, the original high resolution remote sensing image was cut into segments. Then, gray analysis and edge extraction of those segments were done so that changes of roads could be detected. Finally, according to the vector data and gray information of roads which were not changed, road templates were extracted and saved automatically. This method was performed on the World View high resolution image of certain parts in the country. The detection result shows that detection correctness is 79.56% and completeness can reach 97.72%. Moreover, the extracted road templates are essentials for the template matching method of road extraction.展开更多
[ Objective] The study aimed to improve methods of monitoring Karst Rocky Desertification (KRD) control projects and increase the working efficiency. [Method] Based on remote sensing images with medium and high spat...[ Objective] The study aimed to improve methods of monitoring Karst Rocky Desertification (KRD) control projects and increase the working efficiency. [Method] Based on remote sensing images with medium and high spatial resolution, KRD control projects in Disi River basin in Puan County were monitored, that is, information of the project construction in the study area was extracted using supervised classification and hu- man-computer interactive interpretation, and the monitoring results were testified with the aid of GPS. [Result] It was feasible to monitor KRD con- trol projects in Disi River basin based on remote sensing images with medium and high resolution, and the monitoring accuracy was satisfactory, reaching above 80% or 90%, so the method is worthy of popularizing. [ Conclusion] Remote sensing images with medium and high resolution can be used to monitor other KRD control Droiects.展开更多
This paper calculates the parameters of image position and orientation,proposes a mathematical model and adopts a new method with three steps of transformations based on parallel ray projection.Every step of the model...This paper calculates the parameters of image position and orientation,proposes a mathematical model and adopts a new method with three steps of transformations based on parallel ray projection.Every step of the model is strict,and the map function of each transformation is the first order polynomials and other simple function.The final calculation of the parameters is for the linear equations with good status.As a result,the problem of the relativity of image parameter calculation is solved completely.Some experiments are carried out.展开更多
By taking urban greening of Tai'an City of Shandong Province for example,selecting remote sensing image Quickbird with high resolution,and combining visual interpretation with automatic classification of the compu...By taking urban greening of Tai'an City of Shandong Province for example,selecting remote sensing image Quickbird with high resolution,and combining visual interpretation with automatic classification of the computer,based on urban green space systematic planning map,green space information of the built-up area has been selected for the research centering on green lands in urban parks,productive green lands,green lands attached to residential areas and units,green lands attached to the road,other green lands,water surfaces and so on.Through the statistics and analysis,the distribution condition of each type of urban green land has been obtained,and some suggestions have been proposed in view of existing problems of urban greening.It should enhance the construction of green lands in urban parks,residential areas and units,improve road greening level,implement vertical greening,increase the area of productive green lands and fully make use of idle lands.展开更多
Measurement of vegetation coverage on a small scale is the foundation for the monitoring of changes in vegetation coverage and of the inversion model of monitoring vegetation coverage on a large scale by remote sensin...Measurement of vegetation coverage on a small scale is the foundation for the monitoring of changes in vegetation coverage and of the inversion model of monitoring vegetation coverage on a large scale by remote sensing. Using the object-oriented analytical software, Definiens Professional 5, a new method for calculating vegetation coverage based on high-resolution images (aerial photographs or near-surface photography) is proposed. Our research supplies references to remote sensing measurements of vegetation coverage on a small scale and accurate fundamental data for the inversion model of vegetation coverage on a large and intermediate scale to improve the accuracy of remote sensing monitoring of changes in vegetation coverage.展开更多
文摘On the basis of realization of beach information and its differentiating of high-resolution remote sensing image on coastal zone, extracting objects are carried through RS multi-scale diagnostic analysis, and fast information extraction methods and key technologies are put forward. Meanwhile image segmentation methods are set forth for objects of coastal zone. And through the application of Otsu2D to the segmentation of water area and dock and the applying of Gabor filter to the separation and extraction of construction, some typical applications of high-resolution RS image are presented in the field of coastal zone surface objects' recognition. Quantizing high-resolution RS information on the coastal zone proved to be of great scientific and practical significance for coastal development and management.
基金National Natural Science Foundation of China(No.41871305)National Key Research and Development Program of China(No.2017YFC0602204)+2 种基金Fundamental Research Funds for the Central Universities,China University of Geosciences(Wuhan)(No.CUGQY1945)Open Fund of Key Laboratory of Geological Survey and Evaluation of Ministry of Education and the Fundamental Research Funds for the Central Universities(No.GLAB2019ZR02)Open Fund of Laboratory of Urban Land Resources Monitoring and Simulation,Ministry of Natural Resources,China(No.KF-2020-05-068)。
文摘The exploration of building detection plays an important role in urban planning,smart city and military.Aiming at the problem of high overlapping ratio of detection frames for dense building detection in high resolution remote sensing images,we present an effective YOLOv3 framework,corner regression-based YOLOv3(Correg-YOLOv3),to localize dense building accurately.This improved YOLOv3 algorithm establishes a vertex regression mechanism and an additional loss item about building vertex offsets relative to the center point of bounding box.By extending output dimensions,the trained model is able to output the rectangular bounding boxes and the building vertices meanwhile.Finally,we evaluate the performance of the Correg-YOLOv3 on our self-produced data set and provide a comparative analysis qualitatively and quantitatively.The experimental results achieve high performance in precision(96.45%),recall rate(95.75%),F1 score(96.10%)and average precision(98.05%),which were 2.73%,5.4%,4.1%and 4.73%higher than that of YOLOv3.Therefore,our proposed algorithm effectively tackles the problem of dense building detection in high resolution images.
文摘This paper introduces some of the image processing techniques developed in the Canada Research Chair in Advanced Geomatics Image Processing Laboratory (CRC-AGIP Lab) and in the Department of Geodesy and Geomatics Engineering (GGE) at the University of New Brunswick (UNB), Canada. The techniques were developed by innovatively/“smartly” utilizing the characteristics of the available very high resolution optical remote sensing images to solve important problems or create new applications in photogrammetry and remote sensing. The techniques to be introduced are: automated image fusion (UNB-PanSharp), satellite image online mapping, street view technology, moving vehicle detection using single set satellite imagery, supervised image segmentation, image matching in smooth areas, and change detection using images from different viewing angles. Because of their broad application potential, some of the techniques have made a global impact, and some have demonstrated the potential for a global impact.
文摘Some studies about road vector map change detection were done in this paper. Firstly, on the basis of old road vector data, the original high resolution remote sensing image was cut into segments. Then, gray analysis and edge extraction of those segments were done so that changes of roads could be detected. Finally, according to the vector data and gray information of roads which were not changed, road templates were extracted and saved automatically. This method was performed on the World View high resolution image of certain parts in the country. The detection result shows that detection correctness is 79.56% and completeness can reach 97.72%. Moreover, the extracted road templates are essentials for the template matching method of road extraction.
基金Supported by the Key Science and Technology Projects of Guizhou Province,China[(2007)3017,(2008)3022]Major Special Project of Guizhou Province,China(2006-6006-2)
文摘[ Objective] The study aimed to improve methods of monitoring Karst Rocky Desertification (KRD) control projects and increase the working efficiency. [Method] Based on remote sensing images with medium and high spatial resolution, KRD control projects in Disi River basin in Puan County were monitored, that is, information of the project construction in the study area was extracted using supervised classification and hu- man-computer interactive interpretation, and the monitoring results were testified with the aid of GPS. [Result] It was feasible to monitor KRD con- trol projects in Disi River basin based on remote sensing images with medium and high resolution, and the monitoring accuracy was satisfactory, reaching above 80% or 90%, so the method is worthy of popularizing. [ Conclusion] Remote sensing images with medium and high resolution can be used to monitor other KRD control Droiects.
文摘This paper calculates the parameters of image position and orientation,proposes a mathematical model and adopts a new method with three steps of transformations based on parallel ray projection.Every step of the model is strict,and the map function of each transformation is the first order polynomials and other simple function.The final calculation of the parameters is for the linear equations with good status.As a result,the problem of the relativity of image parameter calculation is solved completely.Some experiments are carried out.
基金Supported by Natural Science Foundation of China (31070626)Natural Science Fund of Huaihai Institute of Technology (2010150041)
文摘By taking urban greening of Tai'an City of Shandong Province for example,selecting remote sensing image Quickbird with high resolution,and combining visual interpretation with automatic classification of the computer,based on urban green space systematic planning map,green space information of the built-up area has been selected for the research centering on green lands in urban parks,productive green lands,green lands attached to residential areas and units,green lands attached to the road,other green lands,water surfaces and so on.Through the statistics and analysis,the distribution condition of each type of urban green land has been obtained,and some suggestions have been proposed in view of existing problems of urban greening.It should enhance the construction of green lands in urban parks,residential areas and units,improve road greening level,implement vertical greening,increase the area of productive green lands and fully make use of idle lands.
基金funded by the National Natural Science Foundation of China(Grant No.40571029).
文摘Measurement of vegetation coverage on a small scale is the foundation for the monitoring of changes in vegetation coverage and of the inversion model of monitoring vegetation coverage on a large scale by remote sensing. Using the object-oriented analytical software, Definiens Professional 5, a new method for calculating vegetation coverage based on high-resolution images (aerial photographs or near-surface photography) is proposed. Our research supplies references to remote sensing measurements of vegetation coverage on a small scale and accurate fundamental data for the inversion model of vegetation coverage on a large and intermediate scale to improve the accuracy of remote sensing monitoring of changes in vegetation coverage.