Pressure-flow analytical formulas of lubrication film of slipper pairs on camshaft connecting rod type low speed high torque (LSHT) hydraulic motors are put forward. The bottom surface of slipper pairs is rectangle,...Pressure-flow analytical formulas of lubrication film of slipper pairs on camshaft connecting rod type low speed high torque (LSHT) hydraulic motors are put forward. The bottom surface of slipper pairs is rectangle, and the effect of squeeze flow and pressure differential flow is considered. The dynamic process of lubrication film formation through squeezing is numerically studied by computer simulation. Effects of supply pressure, initial lubrication film thickness, velocity damping coefficient, loading impact and gravity, etc are studied. Advantages of novel slipper pairs with large oil cavity area are pointed out.展开更多
On the basis of the traditional mechanical model of a grinding wheel rotor and the mechanical-electric coupling model with ideal sinusoidal supply, taking high-frequency converting current of inverter power switches i...On the basis of the traditional mechanical model of a grinding wheel rotor and the mechanical-electric coupling model with ideal sinusoidal supply, taking high-frequency converting current of inverter power switches into further consideration, a modified mechanical-electric coupling model is created. The created model consists of an inverter, a motorized spindle, a grinding wheel and grinding loads. Some typical non-stationary processes of the grinding system with two different supplies, including the starting, the speed rising and the break in grinding loads, are compared by making use of the created model. One supply is an ideal sinusoidal voltage source, the other is an inverter. The theoretical analysis of the high-order harmonic is also compared with the experimental result. The material strategy of suppressing high-order harmonic mechanical-electric coupling vibration by optimizing inverter operating parameters is proposed.展开更多
High speed machining and high precision machining are two tendencies of themanufacturing technology worldwide. The motorized spindle is the core component of the machine toolsfor achieving the high speed and high prec...High speed machining and high precision machining are two tendencies of themanufacturing technology worldwide. The motorized spindle is the core component of the machine toolsfor achieving the high speed and high precise machining, which affects the general developmentlevel of the machine tools to a great extent. Progress of the key techniques is reviewed in thispaper, in which the high speed and high precision spindle bearings, the dynamical and thermalcharacteristics of spindles, the design technique of the high frequency motors and the drivers, theanti-electromagnetic damage technique of the motors, and the machining and assembling technique areinvolved. Finally, tha development tendencies of the motorized spindles are presented.展开更多
Split ratio,i.e.the ratio of stator inner diameter to outer diameter,has a closed relationship with electromagnetic performance of permanent magnet(PM)motors.In this paper,the toroidal windings with short end-winding ...Split ratio,i.e.the ratio of stator inner diameter to outer diameter,has a closed relationship with electromagnetic performance of permanent magnet(PM)motors.In this paper,the toroidal windings with short end-winding axial length are employed in the 6-slot/2-pole(6s/2p)PM motor for high speed applications.The split ratio is optimized together with the ratio of inner slot to outer slot area,i.e.slot ratio,considering stator total loss(stator iron loss and copper loss).In addition,the influence of maximum stator iron flux density and tooth-tip on the optimal split ratio,slot ratio,and average torque is investigated.The analytical predictions show that when the slot ratio is 0.5,the maximum torque can be achieved,and the optimal split ratio increases with the decrease of slot ratio,as confirmed by the finite element(FE)analyses.Finally,some of predicted results are verified by the measured results of 6s/2p prototype motor with 0.5 slot ratio.展开更多
This paper presents an analysis based on analytical method for solid rotor motors for determining the rotor eddy current losses due to the current harmonics of the stator winding. The accuracy of the analytical result...This paper presents an analysis based on analytical method for solid rotor motors for determining the rotor eddy current losses due to the current harmonics of the stator winding. The accuracy of the analytical results is verified by experiments.展开更多
Recently, an interest in a hybrid system combining only the merits of the conventional wheel-rail system and Maglev propulsion system is growing as an alternative to high-speed maglev train. This hybrid-type system is...Recently, an interest in a hybrid system combining only the merits of the conventional wheel-rail system and Maglev propulsion system is growing as an alternative to high-speed maglev train. This hybrid-type system is based on wheel-rail method, but it enables to overcome the speed limitation by adhesion because it is operated through a non-contact method using a linear motor as a propulsion system and reduce the overall construction costs by its compatibility with the conventional railway systems. Therefore, a comparative analysis on electromagnetic characteristics according to the structural combinations on the stator-mover of LSM (linear synchronous motor) for VHST (very high speed train) maintaining the conventional wheel-rail method is conducted, and the structure of coreless superconducting LSM suitable for 600 km/h VHST is finally proposed in this paper.展开更多
High speed and high efficiency synchronized electric motors are favored in the automotive industry and turbo machinery industry worldwide because of the demands placed on efficiency. Herein an electric motor thermal c...High speed and high efficiency synchronized electric motors are favored in the automotive industry and turbo machinery industry worldwide because of the demands placed on efficiency. Herein an electric motor thermal control system using cooling air which enters from the drive end of the motor and exits from the non-drive end of the motor as the rotor experiences dissipates heat is addressed using CFD. Analyses using CFD can help to find the appropriate mass flow rate and windage losses while satisfying temperature requirements on the motor. Here, the air flow through a small annular gap is fed at 620 L/min (0.011 kg/sec) as the rotor spins at 100,000 rpm (10,472 rad/sec) and the rotor dissipates 200 W. The CFD results are compared with experimental results. Based upon the CFD findings, a novel heat transfer correlation suitable for large axial Reynolds number, large Taylor number, small annular gap Taylor-Couette flows subject to axial cross-flow is proposed herein.展开更多
In order to realize high speed machining, the special requirements for feed transmission system of the CNC machine tool have to be satisfied. A high velocity feed unit driven by a induction linear motor is developed. ...In order to realize high speed machining, the special requirements for feed transmission system of the CNC machine tool have to be satisfied. A high velocity feed unit driven by a induction linear motor is developed. The compositions of the high velocity CNC feed unit and main problems in the unit design are discussed.展开更多
The high speed motor is effective to realize downsizing motor in an electric vehicle(EV).Switched Reluctance Motor(SRM)is possible to the high speed drive because the rotor structure has simple and robust.However,the ...The high speed motor is effective to realize downsizing motor in an electric vehicle(EV).Switched Reluctance Motor(SRM)is possible to the high speed drive because the rotor structure has simple and robust.However,the vibration and the acoustic noise are large from the drive principle.Moreover,the conventional complicated current excitation results in the difficulty of the torque controller design.To overcome these problems,the vector control has been proposed for SRM drive.However,the vector control has not been applied to the SRM in the high speed drive.In this paper,the drive conditions such as switching frequency,bus voltage for driving the SRM in the high speed region are clarified.It is shown that the proposed SRM can be driven by the vector control in the high speed region and can realize low vibration.展开更多
An induction motor with its speed modulated by frequency features wide transfer speed range, high systematie efficiency, simple structure and long life, and it therefore becomes one of the best driving motors used in ...An induction motor with its speed modulated by frequency features wide transfer speed range, high systematie efficiency, simple structure and long life, and it therefore becomes one of the best driving motors used in electrical vehicles. The present research trend of it is high power, high speed, high efficiency and long life. How to meet the above requirements by using the electromagnetic design, structure design and beat design, becomes a matter that needs to be resolved now. In this paper, the characters of the motor in operation are analyzed, all kinds of factors that relate to life are laid out, its heating and loss are discussed and analyzed. The key reasons affecting the motor life are presented, and different characters of a high induction motor are compared with these of a general induction motor. A design idea is described, that is : we should consider how to improve the efficiency and reliability as well as bow to reduce the heating by changing the electromagnet, structure, dissipation and operation of the motor. How to reduce its losses and to improve its dissipation has been presented in the paper.展开更多
This paper deals with a study on the dynamic behavior of 600 km/h wheel-type train propelled by superconducting linear synchronous motor (LSM). This train is of a traditional wheel-on-rail type with traction motors on...This paper deals with a study on the dynamic behavior of 600 km/h wheel-type train propelled by superconducting linear synchronous motor (LSM). This train is of a traditional wheel-on-rail type with traction motors on wheel-bogies. However, for the 600 km/h speed, on the both sides of each vehicle, superconducting LSMs are attached and the ground coils are installed on the guideway. In this case, the guideway irregularities act as disturbance to the vehicle causing deterioration of ride comfort. And besides thrust force, the normal force could be created in superconducting LSM control, which influences vehicle dynamics during running. In this study, to examine the effect of guideway irregularity and normal force on dynamic behavior of proposed train, the vehicle dynamic model is driven and frequency analysis is performed through simulation. The simulation results show that the lateral directional acceleration is mainly influential to ride comfort;however this could be reduced effectively by electromagnetic damping force from linear generator. It is also shown that the normal force effect from superconducting LSM control is limited even though the attractive normal force acts favorably to ride comfort.展开更多
The paper presents the design and technological aspects on the high speed electrical machines which include the mechanical radial and axial strees because of the centrifugal forces. It presents a reverse structure wit...The paper presents the design and technological aspects on the high speed electrical machines which include the mechanical radial and axial strees because of the centrifugal forces. It presents a reverse structure with outlet rotor and inlet stator that have high speed 20.000 rpm-24.000 rpm and power 1 kW for the pecific of the ventilanting centrifugal fan domain. This unconventional type of machine is not still in the phase of specific tests.展开更多
文摘Pressure-flow analytical formulas of lubrication film of slipper pairs on camshaft connecting rod type low speed high torque (LSHT) hydraulic motors are put forward. The bottom surface of slipper pairs is rectangle, and the effect of squeeze flow and pressure differential flow is considered. The dynamic process of lubrication film formation through squeezing is numerically studied by computer simulation. Effects of supply pressure, initial lubrication film thickness, velocity damping coefficient, loading impact and gravity, etc are studied. Advantages of novel slipper pairs with large oil cavity area are pointed out.
基金National Hi-tech Research and Development Program of China(863 Program,No.2008AA04Z116)and Natural Science Foundation of Hunan Province,China.
文摘On the basis of the traditional mechanical model of a grinding wheel rotor and the mechanical-electric coupling model with ideal sinusoidal supply, taking high-frequency converting current of inverter power switches into further consideration, a modified mechanical-electric coupling model is created. The created model consists of an inverter, a motorized spindle, a grinding wheel and grinding loads. Some typical non-stationary processes of the grinding system with two different supplies, including the starting, the speed rising and the break in grinding loads, are compared by making use of the created model. One supply is an ideal sinusoidal voltage source, the other is an inverter. The theoretical analysis of the high-order harmonic is also compared with the experimental result. The material strategy of suppressing high-order harmonic mechanical-electric coupling vibration by optimizing inverter operating parameters is proposed.
文摘High speed machining and high precision machining are two tendencies of themanufacturing technology worldwide. The motorized spindle is the core component of the machine toolsfor achieving the high speed and high precise machining, which affects the general developmentlevel of the machine tools to a great extent. Progress of the key techniques is reviewed in thispaper, in which the high speed and high precision spindle bearings, the dynamical and thermalcharacteristics of spindles, the design technique of the high frequency motors and the drivers, theanti-electromagnetic damage technique of the motors, and the machining and assembling technique areinvolved. Finally, tha development tendencies of the motorized spindles are presented.
文摘Split ratio,i.e.the ratio of stator inner diameter to outer diameter,has a closed relationship with electromagnetic performance of permanent magnet(PM)motors.In this paper,the toroidal windings with short end-winding axial length are employed in the 6-slot/2-pole(6s/2p)PM motor for high speed applications.The split ratio is optimized together with the ratio of inner slot to outer slot area,i.e.slot ratio,considering stator total loss(stator iron loss and copper loss).In addition,the influence of maximum stator iron flux density and tooth-tip on the optimal split ratio,slot ratio,and average torque is investigated.The analytical predictions show that when the slot ratio is 0.5,the maximum torque can be achieved,and the optimal split ratio increases with the decrease of slot ratio,as confirmed by the finite element(FE)analyses.Finally,some of predicted results are verified by the measured results of 6s/2p prototype motor with 0.5 slot ratio.
文摘This paper presents an analysis based on analytical method for solid rotor motors for determining the rotor eddy current losses due to the current harmonics of the stator winding. The accuracy of the analytical results is verified by experiments.
文摘Recently, an interest in a hybrid system combining only the merits of the conventional wheel-rail system and Maglev propulsion system is growing as an alternative to high-speed maglev train. This hybrid-type system is based on wheel-rail method, but it enables to overcome the speed limitation by adhesion because it is operated through a non-contact method using a linear motor as a propulsion system and reduce the overall construction costs by its compatibility with the conventional railway systems. Therefore, a comparative analysis on electromagnetic characteristics according to the structural combinations on the stator-mover of LSM (linear synchronous motor) for VHST (very high speed train) maintaining the conventional wheel-rail method is conducted, and the structure of coreless superconducting LSM suitable for 600 km/h VHST is finally proposed in this paper.
文摘High speed and high efficiency synchronized electric motors are favored in the automotive industry and turbo machinery industry worldwide because of the demands placed on efficiency. Herein an electric motor thermal control system using cooling air which enters from the drive end of the motor and exits from the non-drive end of the motor as the rotor experiences dissipates heat is addressed using CFD. Analyses using CFD can help to find the appropriate mass flow rate and windage losses while satisfying temperature requirements on the motor. Here, the air flow through a small annular gap is fed at 620 L/min (0.011 kg/sec) as the rotor spins at 100,000 rpm (10,472 rad/sec) and the rotor dissipates 200 W. The CFD results are compared with experimental results. Based upon the CFD findings, a novel heat transfer correlation suitable for large axial Reynolds number, large Taylor number, small annular gap Taylor-Couette flows subject to axial cross-flow is proposed herein.
基金This project is supported by National Natural Science Foundation of China !(59575063) Provincial Natural Science Foundation
文摘In order to realize high speed machining, the special requirements for feed transmission system of the CNC machine tool have to be satisfied. A high velocity feed unit driven by a induction linear motor is developed. The compositions of the high velocity CNC feed unit and main problems in the unit design are discussed.
文摘The high speed motor is effective to realize downsizing motor in an electric vehicle(EV).Switched Reluctance Motor(SRM)is possible to the high speed drive because the rotor structure has simple and robust.However,the vibration and the acoustic noise are large from the drive principle.Moreover,the conventional complicated current excitation results in the difficulty of the torque controller design.To overcome these problems,the vector control has been proposed for SRM drive.However,the vector control has not been applied to the SRM in the high speed drive.In this paper,the drive conditions such as switching frequency,bus voltage for driving the SRM in the high speed region are clarified.It is shown that the proposed SRM can be driven by the vector control in the high speed region and can realize low vibration.
文摘An induction motor with its speed modulated by frequency features wide transfer speed range, high systematie efficiency, simple structure and long life, and it therefore becomes one of the best driving motors used in electrical vehicles. The present research trend of it is high power, high speed, high efficiency and long life. How to meet the above requirements by using the electromagnetic design, structure design and beat design, becomes a matter that needs to be resolved now. In this paper, the characters of the motor in operation are analyzed, all kinds of factors that relate to life are laid out, its heating and loss are discussed and analyzed. The key reasons affecting the motor life are presented, and different characters of a high induction motor are compared with these of a general induction motor. A design idea is described, that is : we should consider how to improve the efficiency and reliability as well as bow to reduce the heating by changing the electromagnet, structure, dissipation and operation of the motor. How to reduce its losses and to improve its dissipation has been presented in the paper.
文摘This paper deals with a study on the dynamic behavior of 600 km/h wheel-type train propelled by superconducting linear synchronous motor (LSM). This train is of a traditional wheel-on-rail type with traction motors on wheel-bogies. However, for the 600 km/h speed, on the both sides of each vehicle, superconducting LSMs are attached and the ground coils are installed on the guideway. In this case, the guideway irregularities act as disturbance to the vehicle causing deterioration of ride comfort. And besides thrust force, the normal force could be created in superconducting LSM control, which influences vehicle dynamics during running. In this study, to examine the effect of guideway irregularity and normal force on dynamic behavior of proposed train, the vehicle dynamic model is driven and frequency analysis is performed through simulation. The simulation results show that the lateral directional acceleration is mainly influential to ride comfort;however this could be reduced effectively by electromagnetic damping force from linear generator. It is also shown that the normal force effect from superconducting LSM control is limited even though the attractive normal force acts favorably to ride comfort.
文摘The paper presents the design and technological aspects on the high speed electrical machines which include the mechanical radial and axial strees because of the centrifugal forces. It presents a reverse structure with outlet rotor and inlet stator that have high speed 20.000 rpm-24.000 rpm and power 1 kW for the pecific of the ventilanting centrifugal fan domain. This unconventional type of machine is not still in the phase of specific tests.