期刊文献+
共找到4,433篇文章
< 1 2 222 >
每页显示 20 50 100
The Frost-resisting Durability of High Strength Self-Compacting Pervious Concrete in Deicing Salt Environment 被引量:11
1
作者 封金财 ZONG Ningwen +3 位作者 ZHU Pinghua 刘惠 YAO Lan GENG Jiang 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2020年第1期167-175,共9页
A high strength self-compacting pervious concrete(SCPC) with top-bottom interconnected pores was prepared in this paper. The frost-resisting durability of such SCPC in different deicing salt concentrations(0%, 3%, 5%,... A high strength self-compacting pervious concrete(SCPC) with top-bottom interconnected pores was prepared in this paper. The frost-resisting durability of such SCPC in different deicing salt concentrations(0%, 3%, 5%, 10%, and 20%) was investigated. The mass-loss rate, relative dynamic modulus of elasticity, compressive strength, flexural strength and hydraulic conductivity of SCPC after 300 freeze-thaw cycles were measured to evaluate the frost-resisting durability. In addition, the microstructures of SCPC near the top-bottom interconnected pores after 300 freeze-thaw cycles were observed by SEM. The results show that the high strength SCPC possesses much better frost-resisting durability than traditional pervious concrete(TPC) after 300 freeze-thaw cycles, which can be used in heavy loading roads. The most serious freeze-thaw damage emerges in the SCPC immersed in the 3% of Na Cl solution, while there is no obvious damage in 20% of Na Cl solution. Furthermore, it can be deduced that the high strength SCPC can be used for 100 years in a cold environment. 展开更多
关键词 high strength SELF-COMPACTING pervious concrete top-bottom interconnected pores heavy loading road frost-resisting DURABILITY DEICING salt ENVIRONMENT
下载PDF
Seismic performance of steel reinforced ultra high-strength concrete composite frame joints 被引量:5
2
作者 Yan Changwang Jia Jinqing 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2010年第3期439-448,共10页
To investigate the seismic performance of a composite frame comprised of steel reinforced ultra high-strength concrete (SRUHSC) columns and steel reinforced concrete (SRC) beams, six interior frame joint specimens... To investigate the seismic performance of a composite frame comprised of steel reinforced ultra high-strength concrete (SRUHSC) columns and steel reinforced concrete (SRC) beams, six interior frame joint specimens were designed and tested under low cyclically lateral load. The effects of the axial load ratio and volumetric stirrup ratio were studied on the characteristics of the frame joint performance including crack pattern, failure mode, ductility, energy dissipation capacity, strength degradation and rigidity degradation. It was found that all joint specimens behaved in a ductile manner with flexural-shear failure in the joint core region while plastic hinges appeared at the beam ends. The ductility and energy absorption capacity of joints increased as the axial load ratio decreased and the volumetric stirIup ratio increased. The displacement ductility coefficient and equivalent damping coefficient of the joints fell between the corresponding coefficients of the steel reinforced concrete (SRC) frame joint and RC frame joint. The axial load ratio and volumetric stirrup ratio have less influence on the strength degradation and more influence on the stiffness degradation. The stiffness of the joint degrades more significantly for a low volumetric stirrup ratio and high axial load ratio. The characteristics obtained from the SRUHSC composite frame joint specimens with better seismic performance may be a useful reference in future engineering applications. 展开更多
关键词 cyclical test axial load ratio volumetric stirrup ratio DUCTILITY strength degradation stiffness degradation steel reinforced ultra high strength concrete beam-column joint
下载PDF
Internal Curing Using Water-releasing Material for High Strength Micro-expansive Concrete 被引量:5
3
作者 吕林女 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2009年第3期510-513,共4页
Due to its low water content, it is difficult for expansive agent to have an effective expansive effect on high strength concrete to compensate its extensive shrinkage and form a certain expansion. To solve this probl... Due to its low water content, it is difficult for expansive agent to have an effective expansive effect on high strength concrete to compensate its extensive shrinkage and form a certain expansion. To solve this problem, water-releasing material with water storage and releasing characteristics was incorporated into high strength micro-expansive concrete to provide internal curing, and expansive effect of expansive agent was improved. Migration of water from initially saturated water-releasing material to the surrounding hydrating cement paste was investigated. Based on a given efficient diffusion distance of water stored in water-releasing material, the mass and real water-cement ratio of cured cement paste were estimated. At the same time, the effect of internal curing of water-releasing material on the volume deformation of high strength micro-expansive concrete was investigated. 展开更多
关键词 water-releasing material high strength concrete expansive internal curing
下载PDF
Experimental study on the seismic behavior of high strength concrete fi lled double-tube columns 被引量:13
4
作者 Qian Jiaru Li Ningbo +1 位作者 Ji Xiaodong Zhao Zuozhou 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2014年第1期47-57,共11页
To study the seismic behavior of high strength concrete fi lled double-tube(CFDT) columns,each consisting of an external square steel tube and an internal circular steel tube,quasi-static tests on eight CFDT column sp... To study the seismic behavior of high strength concrete fi lled double-tube(CFDT) columns,each consisting of an external square steel tube and an internal circular steel tube,quasi-static tests on eight CFDT column specimens were conducted.The test variables included the width-to-thickness ratio(β1) and the area ratio(β2) of the square steel tube,the wall thickness of the circular steel tube,and the axial force(or the axial force ratio) applied to the CFDT columns.The test results indicate that for CFDT columns with a square steel tube with β1 of 50.1 and 24.5,local buckling of the specimen was found at a drift ratio of 1/150 and 1/50,respectively.The lateral force-displacement hysteretic loops of all specimens were plump and stable.Reducing the width-to-thickness ratio of the square steel tube,increasing its area ratio,or increasing the wall thickness of the internal circular steel tube,led to an increased fl exural strength and deformation capacity of the specimens.Increasing the design value of the axial force ratio from 0.8 to 1.0 may increase the fl exural strength of the specimens,while it may also decrease the ultimate deformation capacity of the specimen with β1 of 50.1. 展开更多
关键词 high strength concrete fi lled double-tube(CFDT)column seismic behavior area ratio of the square steel tube width-to-thickness ratio of the square steel tube axial force ratio quasi-static test
下载PDF
Influence of MB-value of Manufactured Sand on the Shrinkage and Cracking of High Strength Concrete 被引量:4
5
作者 王稷良 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2009年第2期321-325,共5页
The relation between methylene blue (MB) value of MS and its limestone dust content and clay content was investigated. The effects of MB value ranging from 0.35 to 2.5 on the workability of fresh concrete and crack ... The relation between methylene blue (MB) value of MS and its limestone dust content and clay content was investigated. The effects of MB value ranging from 0.35 to 2.5 on the workability of fresh concrete and crack propagation characteristics at the age of 24 hours, and effects on the mechanical properties, dry shrinkage of the harden concrete were tested. The experimental results show that the MB value is not related with the limestone dust content of MS, but in direct proportion to clay content. With the increase of MB value, the concrete workability decreases, and the flexural strength and 7 d compressive strength reduce markedly, whearas the 28 d compressive strength is not affected. When the MB-value is less than or equal to 1.35, the change of the MB-value has a little influence on early plastic cracking and dry shrinkage property of concrete, but when the MB-value is more than 1.35, the tendency of plastic cracking and dry shrinkage is remarkable. 展开更多
关键词 manufactured sand methylene blue value high strength concrete anti-cracking SHRINKAGE
下载PDF
Experimental investigation of axially loaded steel fiber reinforced high strength concrete-filled steel tube columns 被引量:9
6
作者 卢亦焱 李娜 +1 位作者 李杉 梁鸿骏 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第6期2287-2296,共10页
An experimental study on the compressive behavior of steel fiber reinforced concrete-filled steel tube columns is presented. Specimens were tested to investigate the effects of the concrete strength, the thickness of ... An experimental study on the compressive behavior of steel fiber reinforced concrete-filled steel tube columns is presented. Specimens were tested to investigate the effects of the concrete strength, the thickness of steel tube and the steel fiber volume fraction on the ultimate strength and the ductility. The experimental results indicate that the addition of steel fibers in concrete can significantly improve the ductility and the energy dissipation capacity of the concrete-filled steel tube columns and delay the local buckling of the steel tube, but has no obvious effect on the failure mode. It has also been found that the addition of steel fibers is a more effective method than using thicker steel tube in enhancing the ductility, and more advantageous in the case of higher strength concrete. An analytical model to estimate the load capacity is proposed for steel tube columns filled with both plain concrete and steel fiber reinforced concrete. The predicted results are in good agreement with the experimental ones obtained in this work and literatures. 展开更多
关键词 concrete-filled steel tube (CFST) zolumns steel fiber high strength concrete axial load DUCTILITY load capacity
下载PDF
Mechanism of improving ductility of high strength concrete T-section beam confined by CFRP sheet subjected to flexural loading 被引量:4
7
作者 王苏岩 王泽源 《Journal of Central South University》 SCIE EI CAS 2013年第1期246-255,共10页
For the purpose of inventing a new seismic retrofitting method for the reinforced high strength concrete (HSC) T-section beam using carbon fiber reinforced polymer (CFRP) sheet, three series, a total of twelve T-s... For the purpose of inventing a new seismic retrofitting method for the reinforced high strength concrete (HSC) T-section beam using carbon fiber reinforced polymer (CFRP) sheet, three series, a total of twelve T-section beams with nine specimens confined by CFRP sheet in the plastic zone and three control beams were conducted up to failure under four-point bending test. The effectiveness of confining CFRP sheet on improving the flexural ductility of tmstrengthened T-section beams was studied. The parameters such as the width and the thickness of CFRP sheet and the type of T-section were analyzed. The experimental results show that ductility and rotation capacity of plastic hinge can be improved by the confinement of CFRP sheet, and the ductility indices increase with the increment of width and thickness of CFRP sheet. A plastic rotation model considering the width of CFRP sheet and the effect of flange of T-section beam is proposed on the basis of the model of BAKER, and the test results show a good agreement with the perdicted results. The relevant construction suggestions for seismic retrofitting design of beam-slabs system in cast-in-place framework structure are presented. 展开更多
关键词 high strength concrete fiber reinforced polymer T-section BEAM DUCTILITY plastic hinge
下载PDF
Residual Mechanical Properties and Explosive Spalling Behavior of Ultra-High-Strength Concrete Exposed to High Temperature 被引量:2
8
作者 Gaifei Peng Juan Yang 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2017年第4期62-70,共9页
In order to explore the characteristics of ultra-high-strength concrete exposed to high temperature,residual mechanical properties and explosive spalling behavior of ultra-high-strength concrete( UHSC) and high streng... In order to explore the characteristics of ultra-high-strength concrete exposed to high temperature,residual mechanical properties and explosive spalling behavior of ultra-high-strength concrete( UHSC) and high strength concrete( HSC) exposed to high temperatures ranging from 20 ℃ to 800 ℃ were determined. The microstructure of the specimens after exposure to elevated temperature was analyzed by means of scanning electron microscope( SEM) and mercury intrusion porosimetry( MIP). The residual compressive strengths of UHSC and HSC were first increased and then decreased as temperature increased. After exposure to 800 ℃,the compressive strengths of UHSC and HSC were 24. 2 % and 22. 3 % of their original strengths at 20 ℃,respectively. The residual splitting tensile strengths of both UHSC and HSC were consistently decreased with the temperature increasing and were approximately 20% of their original strengths after 800 ℃. However,the residual fracture energies of both concretes tended to ascend even at 600 ℃. The explosive spalling of UHSC was more serious than that of HSC. Moisture content of the specimens governs the explosive spalling of both concretes with a positive correlations,and it is more pronounced in UHSC. These results suggest that UHSC suffers a substantial loss in load-bearing capacity and is highly prone to explosive spalling due to high temperature. The changes in compressive strength are due to the changes in the density and the pore structure of concrete. The probability and severity of explosive spalling of UHSC are much higher than those of HSC due to the higher pore volume in HSC. 展开更多
关键词 ultra-high-strength concrete high strength concrete RESIDUAL mechanical properties EXPLOSIVE SPALLING
下载PDF
FAILURE MODE AND CONSTITUTIVE MODEL OF PLAIN HIGH-STRENGTH HIGH-PERFORMANCE CONCRETE UNDER BIAXIAL COMPRESSION AFTER EXPOSURE TO HIGH TEMPERATURES 被引量:2
9
作者 Zhenjun He Yupu Song 《Acta Mechanica Solida Sinica》 SCIE EI 2008年第2期149-159,共11页
An orthotropic constitutive relationship with temperature parameters for plain highstrength high-performance concrete (HSHPC) under biaxial compression is developed. It is based on the experiments performed for char... An orthotropic constitutive relationship with temperature parameters for plain highstrength high-performance concrete (HSHPC) under biaxial compression is developed. It is based on the experiments performed for characterizing the strength and deformation behavior at two strength levels of HSHPC at 7 different stress ratios including a=σs : σ3=0.00:-1,-0.20:-1,-0.30 : -1,-0.40:-1,-0.50:-1,-0.75:-1,-1.00:-1, after the exposure to normal and high temperatures of 20, 200, 300, 400, 500 and 600℃, and using a large static-dynamic true triaxial machine. The biaxial tests were performed on 100 mm×100 mm×100 mm cubic specimens, and friction-reducing pads were used consisting of three layers of plastic membrane with glycerine in-between for the compressive loading plane. Based on the experimental results, failure modes of HSHPC specimens were described. The principal static compressive strengths, strains at the peak stress and stress-strain curves were measured; and the influence of the temperature and stress ratios on them was also analyzed. The experimental results showed that the uniaxial compressive strength of plain HSHPC after exposure to high temperatures does not decrease dramatically with the increase of temperature. The ratio of the biaxial to its uniaxial compressive strength depends on the stress ratios and brittleness-stiffness of HSHPC after exposure to different temperature levels. Comparison of the stress-strain results obtained from the theoretical model and the experimental data indicates good agreement. 展开更多
关键词 high-strength high-performance concrete (HSHPC) high temperatures uniaxial biaxial compressive strength failure criterion stress-strain relationship
下载PDF
Charactersitics of Stress-strain Curve of High Strength Steel Fiber Reinforced Concrete under Uniaxial Tension 被引量:2
10
作者 杨萌 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2006年第3期132-137,共6页
A whole of 110 specimens divided into 22 groups were tested with varying the volume fraction of steel fibers and the matrix strength of these specimens. The stress-strain behaviors of four types of steel fiber reinfo... A whole of 110 specimens divided into 22 groups were tested with varying the volume fraction of steel fibers and the matrix strength of these specimens. The stress-strain behaviors of four types of steel fiber reinforced concrete (SFRC) under uniaxial tension were studied experimentally. When the matrix strength and the fiber content increase, the tensile stress and tensile strain vary differently according to the fiber type. The mechanisms of reinforcing effect for different types of fiber were analyzed and the stress-strain curves of the specimens were plotted. Some experimental factors for stress or strain of SFRC were given. A tensile toughness modulus Re0.5 was introduced to evaluate the toughness characters of SFRC under uniaxial tension. Moreover, the formula of the tensile stress-strain curve of SFRC was regressed. The theoretical curve and the experimental ones fit well, which can be used for references in construction. 展开更多
关键词 steel fiber reinforced concrete high strength uniaxial tension soften characteristics stress-strain curve
下载PDF
Mechanical properties of high-strength concrete subjected to high temperature by stressed test 被引量:10
11
作者 Gyu-Yong KIM Young-Sun KIM Tae-Gyu LEE 《中国有色金属学会会刊:英文版》 CSCD 2009年第B09期128-133,共6页
Recently, the effects of high temperature on compressive strength and elastic modulus of high strength concrete were experimentally investigated. The present study is aimed to study the effect of elevated temperatures... Recently, the effects of high temperature on compressive strength and elastic modulus of high strength concrete were experimentally investigated. The present study is aimed to study the effect of elevated temperatures ranging from 20 ℃ to 700 ℃ on the material mechanical properties of high-strength concrete of 40, 60 and 80 MPa grade. During the strength test, the specimens are subjected to a 25% of ultimate compressive strength at room temperature and sustained during heating, and when the target temperature is reached, the specimens are loaded to failure. The tests were conducted at various temperatures (20-700 ℃) for concretes made with W/B ratios of 46%, 32% and 25%, respectively. The results show that the relative values of compressive strength and elastic modulus decrease with increasing compressive strength grade of specimen. 展开更多
关键词 高强混凝土 高温作用 力学性能 测试 抗压强度 温度升高 弹性模量 强度试验
下载PDF
Mechanical Properties and Flowability of High Strength Concrete Incorporating Ground Granulated Blast-furnace Slag 被引量:1
12
作者 姚武 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2001年第3期42-45,共4页
The high strength concrete(HSC)was produced by partially replacingthe normal portland cement with special ground granulatedblast-furnace slag(GGBS)ranging up to 60/100. The effects of the GGBSon the flowabilityand mec... The high strength concrete(HSC)was produced by partially replacingthe normal portland cement with special ground granulatedblast-furnace slag(GGBS)ranging up to 60/100. The effects of the GGBSon the flowabilityand mechanical properties of HSC were studied. Thehydration process and microstructure char- acteristics wereinvestigated by X-ray diffraction(XRD)and scanning microscopy(SEM),respectively. The test results indicate that the GGBS has especiallysupplementary effect on water reducing and excellent property Ofbetter control of lump loss. 展开更多
关键词 high strength concrete mechanical property FLOWABILITY
下载PDF
Influence of Nano-Materials on Mechanical and Permeation Characteristics of High Strength Concrete 被引量:1
13
作者 K V S Gopala Krishna Sastry M Srinivasula Reddy A Ravitheja 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2022年第3期416-422,共7页
Efforts have been made to evaluate the influences of the addition of nanoparticles on the strength,durability and mineralogical changes of high strength concrete(HSC).Therefore,mixes were prepared for conventional con... Efforts have been made to evaluate the influences of the addition of nanoparticles on the strength,durability and mineralogical changes of high strength concrete(HSC).Therefore,mixes were prepared for conventional concrete mix(CCM)of M80 grade.Further,various mixes were prepared by replacing cementitious materials initially with 1%Nano-CaCO_(3)(NC),2%NC,3%NC in the CCM,and then 1%NC and Nano-SiO_(2)(NS)NS,2%NC and NS,3%NC and NS(NC and NS were in equal proportion)in the CCM.The developed concretes were then evaluated for mechanical properties,permeation characteristics,and mineralogical studies.From the studies,it is found that the concrete at 2%NCS possesses superior mechanical and superior permeation characteristics of all the mixes.A clear variation in the mineralogical structure with the addition of nanoparticles has been observed. 展开更多
关键词 high strength concrete nano silicon dioxide nano calcium carbonate mechanical properties permeation properties
下载PDF
Seismic Performance of High-Strength Short Concrete Column with High-Strength Stirrups Constraints 被引量:3
14
作者 Hongyan Ding Yuan Liu +1 位作者 Chao Han Yaohua Guo 《Transactions of Tianjin University》 EI CAS 2017年第4期360-369,共10页
The seismic performance of four short concrete columns was investigated under low cycle and repeated loads, including the failure characteristics, hysteretic behavior, rigidity degeneracy and steel-bar stress. The inf... The seismic performance of four short concrete columns was investigated under low cycle and repeated loads, including the failure characteristics, hysteretic behavior, rigidity degeneracy and steel-bar stress. The influences of reinforcement strength, stirrup ratio and shear span ratio were also compared. Test results reveal that the restriction effect of stirrups can improve the peak stress, so the bearing capacity of specimen can be improved; for the high-strength short concrete column with high-strength stirrups, it was more reasonable to use ultimate displacement angle to reflect the ductility of the specimen, and the yield strength of high-strength stirrups should be devalued when calculating the stirrup characteristic value; the seismic performance of short column would be improved with the increase of volume–stirrup ratio and shear span ratio; the high-strength stirrups and high-strength longitudinal reinforcements did not yield when the load acting on the specimen reached the peak value, which brought adequate safety stock to these short columns. © 2017, Tianjin University and Springer-Verlag Berlin Heidelberg. 展开更多
关键词 Columns (structural) concrete construction concreteS HYSTERESIS Reinforced concrete Reinforcement Seismic waves SEISMOLOGY Shear flow
下载PDF
Effects of Manufactured-sand on Dry Shrinkage and Crccp of High-strength Concrete 被引量:5
15
作者 ZHOU Mingkai WANG Jiliang ZHU Lide HE Tusheng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2008年第2期249-253,共5页
The influences of natural sand, manufactured-sand (MS) and stone-dust (SD) in the manufactured-sand on workability, compressive strength, elastic modulus, drying shrinkage and creep properties of high-strength con... The influences of natural sand, manufactured-sand (MS) and stone-dust (SD) in the manufactured-sand on workability, compressive strength, elastic modulus, drying shrinkage and creep properties of high-strength concrete (HSC) were tested and compared. The results show that the reasonable content (7%-10.5%) of SD in MS will not deteriorate the workability of MS-HSC. It could even improve the workability. Moreover, the compressive strength increases gradually with the increasing SD content,and the MS- HSC with low SD content (smaller than 7%) has the elastic modulus which approaches that of the natural sand HSC, but the elastic modulus reduces when the SD content is high. The influence of the SD content on drying shrinkage performance of MS-HSC is closely related to the hydration age. The shrinkage rate of MS-HSC in the former 7 d age is higher than that of the natural sand HSC, but the difference of the shrinkage rate in the late age is not marked. Meanwhile the shrinkage rate reduces as the fly ash is added; the specific creep and creep coefficient of MS-HSC with 7% SD are close to those of the natural sand HSC. 展开更多
关键词 manufactured-sand natural sand high-strength concrete dry shrinkage CREEP
下载PDF
Strength Regularity and Failure Criterion of High-Strength High-Performance Concrete under Multiaxial Compression 被引量:1
16
作者 何振军 宋玉普 《Journal of Southwest Jiaotong University(English Edition)》 2008年第2期144-149,共6页
Multiaxial compression tests were performed on 100 mm×100 mm×100 mm high-strength high-performance concrete (HSI-IPC) cubes and normal strength concrete (NSC) cubes. The failure modes of specimens were p... Multiaxial compression tests were performed on 100 mm×100 mm×100 mm high-strength high-performance concrete (HSI-IPC) cubes and normal strength concrete (NSC) cubes. The failure modes of specimens were presented, the static compressive strengths in principal directions were measured, the influence of the stress ratios was analyzed. The experimental results show that the ultimate strengths for HSHPC and NSC under multiaxial compression are greater than the uniaxial compressive strengths at all stress ratios, and the multiaxial strength is dependent on the brittleness and stiffness of concrete, the stress state and the stress ratios. In addition, the Kupfer-Gersfle and Ottosen's failure criteria for plain HSHPC and NSC under multiaxial compressive loading were modified. 展开更多
关键词 high-strength high-performance concrete (HSHPC) Normal strength concrete (NSC) Stress ratio Multiaxial corn- pressive slxength Failure criterion
下载PDF
Nonlinear fi nite element analysis of high-strength concrete columns and experimental verification 被引量:1
17
作者 吕西林 陈绍琳 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2008年第1期77-89,共13页
This paper describes a nonlinear finite element (FE) analysis of high strength concrete (HSC) columns, and verifies the results through laboratory experiments. First, a cyclically lateral loading test on nine cant... This paper describes a nonlinear finite element (FE) analysis of high strength concrete (HSC) columns, and verifies the results through laboratory experiments. First, a cyclically lateral loading test on nine cantilever column specimens of HSC is described and a numerical simulation is presented to verify the adopted FE models. Next, based on the FE model for specimen No.6, numerical simulations for 70 cases, in which different concrete strengths, stirrup ratios and axial load ratios are considered, are presented to explore the effect of these parameters on the behavior of the HSC columns, and to check the rationality of requirements for these columns specified in the China Code for Seismic Design of Buildings (GB 50011- 2001). In addition, three cases with different stirrup strengths are analyzed to investigate their effect on the behavior of HSC columns. Finally, based on the numerical results some conclusions are presented. 展开更多
关键词 high-strength concrete column DIANA BOND-SLIP balanced axial load ratio stirrup ratio
下载PDF
MODIFICATION THE CEMENTIOUS MATERIAL OF ULTRA-HIGH-STRENGTH SLEEPER CONCRETE
18
作者 崔崇 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2000年第2期28-34,共7页
This paper presents investigation results on the natural ultra-fine mineral flour of crystalline silica fume (CSF) and porous quartz sand stone (PQSS) which can modify cement mortar strength under hydrothermal synthe... This paper presents investigation results on the natural ultra-fine mineral flour of crystalline silica fume (CSF) and porous quartz sand stone (PQSS) which can modify cement mortar strength under hydrothermal synthesis reaction (HSR) in the autoclave-cured condition. The replacement of cement by CSF and PQSS can signifi cantly increase the Jflerural and compressive strength which reach 22MPa and 150MPa respectively and de-crease the porosity oj the cement mortar. The ratio oj fine aggregation, standard sand to cementions material has sig nificant influence on the mortar strength. The mechanisms involved in cement and natural mineral flour and the HSR are presented. CaO/SiO2 ratio ranges from 3. 20 to 1. 11. the main hydrate phase is C2SH and there is not Tober-morite through X-Ray diffraction qualitative analysis. The new and ultra-high strength cementious material as basic material of sleeper concrete can he used in prestressed reinforcement sleeper concrete. 展开更多
关键词 crystalline silica furne ultra-fine natural mineral flour sleeper concrete ultra high strength cementious material
下载PDF
CT Image-based Analysis on the Defect of Polypropylene Fiber Reinforced High-Strength Concrete at High Temperatures 被引量:2
19
作者 杜红秀 JIANG Yu +1 位作者 LIU Gaili YAN Ruizhen 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第4期898-903,共6页
With the application of X-ray computed tomography(CT) technology of C80 high-strength concrete with polypropylene fiber at elevated temperatures, the microscopic damage evolution process observation and image buildi... With the application of X-ray computed tomography(CT) technology of C80 high-strength concrete with polypropylene fiber at elevated temperatures, the microscopic damage evolution process observation and image building could be obtained, based on the statistics theory and numerical analysis of the combination of concrete internal defects extension and evolution regularity of microscopic structure. The expermental results show that the defect rate has changed at different temperatures and can determine the concrete degradation threshold temperatures. Also, data analysis can help to establish the evolution equation between the defect rate and the effect of temperature damage, and identify that the addition of polypropylene fibers in the high strength concrete at high temperature can improve cracking resistance. 展开更多
关键词 high-strength concrete polypropylene fiber high temperature X-ray computed tomography(CT) technology defect rate
下载PDF
Seismic Performance of Steel Reinforced Ultra High-strength Concrete Columns 被引量:1
20
作者 贾金青 《四川大学学报(工程科学版)》 EI CAS CSCD 北大核心 2009年第3期216-222,230,共8页
The seismic performance of steel reinforced ultra-high-strength concrete columns(SRSHC) with various shear-span ratios(λ) were studied through a series of experiments.The concrete compressive cube strength value of e... The seismic performance of steel reinforced ultra-high-strength concrete columns(SRSHC) with various shear-span ratios(λ) were studied through a series of experiments.The concrete compressive cube strength value of experimental specimens ranged from 92.9 MPa to 108.1 MPa.The main experimental variables affecting seismic performance of specimens were axial load ratio and stirrup reinforcement ratio.The columns(λ=2.75) subjected to low cyclic reversed lateral loads failed mainly in the flexural-shear mode failure and columns(λ≤2.0) subjected to low cyclic reversed lateral loads failed mainly in the shear mode failure.Shear force-displacement hysteretic curves and skeleton curves were drawn.Coefficient of the specimen displacement ductility was calculated.Experimental results indicate that ductility decreases with axial pressure ratio increasing,and increases with stirrup reinforcement ratio increasing.Limit values of axial pressure ratio and minimum stirrup reinforcement ratio of columns are proposed to satisfy definite ductility requirement.The suggested values provide a reference for engineering application and for the amendment of the current Chinese design code of steel reinforced concrete composite structures. 展开更多
关键词 建筑结构 建筑物 抗震设计 混凝土结构
下载PDF
上一页 1 2 222 下一页 到第
使用帮助 返回顶部