Under most models of the early universe evolution, high-frequency gravitational waves (HFGWs) were produced. They are referred to as “relic” high-frequency gravitational waves or HFRGWs and their detection and measu...Under most models of the early universe evolution, high-frequency gravitational waves (HFGWs) were produced. They are referred to as “relic” high-frequency gravitational waves or HFRGWs and their detection and measurement could provide important information on the origin and development of our Universe – information that could not otherwise be obtained. So far three instruments have been built to detect and measure HFRGWs, but so far none of them has achieved the required sensitivity. This paper concerns another detector, originally proposed by Baker in 2000 and patented, which is based upon a recently discovered physical effect (the Li effect);this detector has accordingly been named the “Li-Baker detector.” The detector has been a joint development effort by the P. R. China and the United States HFGW research teams. A rigorous examination of the detector’s performance is important in the ongoing debate over the value of attempting to construct a Li-Baker detector and, in particular, an accurate prediction of its sensitivity in the presence of significant noise will decide whether the Li-Baker detector will be capable of detecting and measuring HFRGWs. The potential for useful HFRGW measurement is theoretically confirmed.展开更多
Various cosmology models, brane oscillation scenarios, interaction of interstellar plasma with intense electromagnetic radiation, and even high-energy physics experiments (e.g., Large Hadron Collider (LHC)) all pr...Various cosmology models, brane oscillation scenarios, interaction of interstellar plasma with intense electromagnetic radiation, and even high-energy physics experiments (e.g., Large Hadron Collider (LHC)) all predict high frequency gravitational waves (HFGWs, i.e., high-energy gravitons) in the microwave band and higher frequency region, and some of them have large energy densities. Electromagnetic (EM) detection to such HFGWs would be suitable due to very high frequencies and large energy densities of the HFGWs. We review several typical EM detection schemes, i.e., inverse Gertsenshtein effect (G-effect), coupling of the inverse G effect with a coherent EM wave, coupling of planar superconducting open cavity with a static magnetic field, cylindrical superconducting closed cavity, and the EM sychro-resonance system, and discuss related minimal detectable amplitudes and sensitivities. Furthermore, we give some new ideas and improvement ways enhancing the possibility of measuring the HFGWs. It is shown that there is still a large room for improvement for those schemes to approach and even reach up the requirement of detection of HFGWs expected by the cosmological models and high-energy astrophysical process.展开更多
Three advances are proposed as a pathway to the cataclysmic event of our first encounter with intelligent extraterrestrial beings. First, discovery of very large numbers of extraterrestrial planets, “exoplanets” (po...Three advances are proposed as a pathway to the cataclysmic event of our first encounter with intelligent extraterrestrial beings. First, discovery of very large numbers of extraterrestrial planets, “exoplanets” (possibly as many as10<sup>23</sup> in our Universe);second, introduction of electronic components into the human body evolving into a cybernetic and biological “cyborg,” a model for an extraterrestrial being Cyborgs might allow advanced civilizations to endure hundreds of thousands of years. Third, the recent development of high-frequency gravitational wave (HFGW) detectors, the communication means of choice for an advanced cyborg civilization since they are not easily absorbed like electromagnetic radiation. Six HFGW detectors are presented for application to our first encounter with intelligent extraterrestrial beings. Numerical estimates are made for the failure of extraterrestrial civilizations such that no two exist at the same time (Fermi’s Paradox). It is concluded that there might remain at least ≈1.48 × 10<sup>8</sup> Worlds intercommunicating with HFGWs at any one time in any one region of our Universe. The predicted form of extraterrestrial beings is by means of animaginary, but based upon comprehensively documented and detailed projection of the evolution of “Earthling” homosapiens, to become “cyborgs.” It is proposed that such long-living cyborg forms of intelligent beings would be encountered by us. The first cataclysmic encounter with them is expected to be interception of their interstellar communications. The predicted frequency of intercepted messages under one set of assumptions is at least 1500 per day. After decoding the intercepted messages, keys may be found to improve vastly the present and future quality of life for us earthlings. Advanced beings might utilize direct brain-to-brain communication and it is concluded that research into brain-to-brain communication and HFGW detection are encouraged.展开更多
Up to the present time gravitational-wave detectors, such as LIGO and Virgo, have been sensitive to frequencies on the order of a few thousand to a small fraction of an Hz. They have been most effective in the study o...Up to the present time gravitational-wave detectors, such as LIGO and Virgo, have been sensitive to frequencies on the order of a few thousand to a small fraction of an Hz. They have been most effective in the study of black-hole mergers. We suggest that high-frequency relic gravitational wave (HFRGW) detectors be developed, especially the Li-Baker HFRGW detector, in the gigahertz and higher frequency range. We believe collecting cosmological, primordial observational data especially generated during the first few seconds after the beginning of our Universe is extremely important. One motivation for this paper is, therefore, that we are confident that observation of relic gravitational waves will provide vital information about the birth of our Universe and its early dynamical evolution. Other astrophysical applications of HFRGW detectors involve the entropy growth of the early Universe, an ability to study alternatives to inflation and to provide clues about the symmetries underlying new physics at the highest energies. A working hypothesis or theory, based upon the rollout of our Universe from infinitesimal Planck Length and Planck Time is presented. This theory involves the rapid motion of time and matter during that early time having frequencies on the order of trillions of cycles per second or more. Several alternative HFRGW detectors are described and the proposed Li-Baker HFRGW detector, which is theoretically sensitive to GW amplitudes, A, as small as 10-32, is discussed in detail. Such sensitivity may provide a means for verifying or falsifying the rollout of our Universe working hypothesis. Essentially a combination of theory and experimentation is presented. It is recommended that plans and detailed specifications for the Li-Baker HFRGW detector be prepared in order to expedite its fabrication.展开更多
We claim that the linking of a shrinking prior universe to our own via a wormhole bridge solution of about ten to the minus forty four power seconds permits the formation of a short-term quintessence scalar field. Sym...We claim that the linking of a shrinking prior universe to our own via a wormhole bridge solution of about ten to the minus forty four power seconds permits the formation of a short-term quintessence scalar field. Symmetries allow for creating high-frequency gravitational waves at the onset of inflation, which has consequences in our present cosmological era. This instantaneous energy transfer between prior to present universes permits relic graviton production which we claim is a viable candidate for future propulsion technologies in space craft design. The Big Bang started as the passage of thermal energy from an existing universe into ours resulting in another Big Bang, and helps us understand how a graviton burst can occur in the first place.展开更多
This paper discusses the basic categories of noise in detecting high frequency gravitational waves in the microwave band (-0.1-10GHz), which contain shot noise from the laser and the thermal radiation photons, therm...This paper discusses the basic categories of noise in detecting high frequency gravitational waves in the microwave band (-0.1-10GHz), which contain shot noise from the laser and the thermal radiation photons, thermal noise from statistical fluctuation of the thermal photons and fluctuation of the temperature, radiation press noise on the fractal membrane, the noise caused by the scattering of the Gaussian Beam (GB) in the detecting tube and noise in the microwave radiometers. The analysis shows that a reasonable signal-to-noise ratio may be achieved for a detecting device with the fixed power of GB (105 W), only when the temperature of the environment is no more than T=I K, and the optimal length of the microwave radiometers is about 0.3 m.展开更多
The high frequency gravitational waves (around lOS-lO12 Hz) could interact with a specially designed electro- magnetic resonance system. It is found that the power of transverse perturbative photon flux (PPF) of a...The high frequency gravitational waves (around lOS-lO12 Hz) could interact with a specially designed electro- magnetic resonance system. It is found that the power of transverse perturbative photon flux (PPF) of an electromagnetic resonance system can be improved significantly by virtue of an astigmatic Caussian beam. Cor- respondingly the signal-to-noise ratio (SNR) would also be improved. When the eccentric ratio of waist satisfying w0x : w0y 〉 1, the peak value of signal photon flux could be raised by 2-4 times with typical systematic parameters, while the background photon flux would be depressed. Therefore, the ratio of transverse PPF to background photon flux (i.e., SNR) can be further improved 3-8 times with dimensionless amplitude of relic gravitational wave ht = 10-36.展开更多
To describe properties of the high frequency gravitational wave (HFGW) propagating through the vacuum gravitational field in Robertson-Walker background space-time, we calculated its energy momentum pseudo-tensor (...To describe properties of the high frequency gravitational wave (HFGW) propagating through the vacuum gravitational field in Robertson-Walker background space-time, we calculated its energy momentum pseudo-tensor (EMPT) in the limit of short wavelengths by taking the Brill-Hartle average on the second order perturbation of the Einstein tensor over several wavelengths. By rewriting the EMPT as a form of perfect fluid, the dynamical back-reaction of HIFGW on the background spacetime was discussed. The result shows that the energy density of HFGW, which is in the gauge we chose, is positive definite. The HFGW serves as a source for curving the background space-time and affects the dynamical evolution and time evolution of the scale factor of the Robertson-Walker metric.展开更多
Note, that micro black holes last within micro seconds, and that we wish to ascertain how to build, in a laboratory, a black hole, which may exist say at least up to 10^?1 seconds and provide a test bed as to early un...Note, that micro black holes last within micro seconds, and that we wish to ascertain how to build, in a laboratory, a black hole, which may exist say at least up to 10^?1 seconds and provide a test bed as to early universe gravitational theories. First of all, it would be to determine, if the mini black hole bomb, would spontaneously occur, unless the Kerr-Newmann black hole were carefully engineered in the laboratory. Specifically, we state that this paper is modeling the creation of an actual Kerr Newman black hole via laser physics, or possibly by other means. We initiate a model of an induced Kerr-Newman black Holes, with specific angular momentum J, and then from there model was to what would happen as to an effective charge, Q, creating an E and B field, commensurate with the release of GWs. The idea is that using a frame of reference trick, plus E + i B = ?function of the derivative of a complex valued scalar field, as given by Appell, in 1887, and reviewed by Whittaker and Watson, 1927 of their “A Course of Modern Analysis” tome that a first principle identification of a B field, commensurate with increase of thermal temperature, T, so as to have artificially induced GW production. This is compared in part with the Park 1955 paper of a spinning rod, producing GW, with the proviso that both the spinning rod paper, and this artificial Kerr-Newman Black hole will employ the idea of lasers in implementation of their respective GW radiation. The idea is in part partly similar to an idea the author discussed with Dr. Robert Baker, in 2016 with the difference that a B field would be generated and linked to effects linked with induced spin to the Kerr-Newman Black hole. We close with some observations about the “black holes have no hair” theorem, and our problem. Citing some recent suppositions that this “theorem” may not be completely true and how that may relate to our experimental situation. We close with observations from Haijicek, 2008 as which may be pertinent to Quantization of Gravity. Furthermore as an answer to questions raised by a referee, we will have a final statement as to how this problem is for a real black hole being induced, and answering his questions in his review, which will be included in a final appendix to this paper. The main issue which is now to avoid the black hole bomb effect which would entail an explosion of a small black hole in a laboratory. Furthermore as an answer to questions raised by a referee, we will have a final statement as to how this problem is for a real black hole being induced, and answering his questions in his review, which will be included in a final appendix to this paper. In all, the main end result is to try to avoid the so called black hole bomb effect, where a mini black hole would explode in a laboratory setting within say 10^?16 or so seconds, i.e. the idea would be to have a reasonably stable configuration within put laser energy, but a small mass, and to do it over hopefully 10^15 or more times longer than the 10^?16 seconds where the mini black hole would quickly evaporate. I.e. a duration of say up to 10^?1 seconds which would provide a base line as to astrophysical modeling of a Kerr-Newman black hole.展开更多
In a prior paper, the d = 1 to d = 7 sense of AdS/CFT solutions were described in general whereas we did not introduce commentary as to GW polarization of gravitational radiation from a worm hole. We will discuss GW p...In a prior paper, the d = 1 to d = 7 sense of AdS/CFT solutions were described in general whereas we did not introduce commentary as to GW polarization of gravitational radiation from a worm hole. We will discuss GW polarization, for d = 1 and in addition say concrete facts as to the strength of the GW radiation, and admissible frequencies. First off, the term Δt is for the smallest unit of time step. Note that in the small Δt limit for d = 1 we avoid any imaginary time no matter what the sign of Ttemp is. And when d = 1 in order to have any solvability one would need X = Δt assumed to be infinitesimal. To first approximation, we set X = Δt as being of Planck time, 10-31 or so seconds, in duration.展开更多
The power spectrum of primordial tensor perturbations Pt increases rapidly in the high frequency region if the spectral index nt 〉 0. It is shown that the amplitude of relic gravitational waves ht (5×109 Hz) v...The power spectrum of primordial tensor perturbations Pt increases rapidly in the high frequency region if the spectral index nt 〉 0. It is shown that the amplitude of relic gravitational waves ht (5×109 Hz) varies from 10-36 to 10-25 while rtt varies from -6.25 × 10-3 to 0.87. A high frequency gravitational wave detector proposed by F,-Y, Li detects gravitational waves through observing the perturbed photon flux that is generated by interaction between relic gravitational waves and electromagnetic field. It is shown that the perturbative photon flux N1x (5 × 109 Hz) varies from 1.40× 10-4 s-i to 2.85× 107 s-i while nt varies from -6.25 ×10-3 to 0.87, Correspondingly, the ratio of the transverse perturbative photon flux N1x to the background photon flux varies from 10-28 to 10-16.展开更多
Extremely powerful astrophysical electromagnetic(EM) systems could be possible sources of highfrequency gravitational waves(HFGWs). Here, based on properties of magnetars and gamma-ray bursts(GRBs), we address ...Extremely powerful astrophysical electromagnetic(EM) systems could be possible sources of highfrequency gravitational waves(HFGWs). Here, based on properties of magnetars and gamma-ray bursts(GRBs), we address "Gamma-HFGWs"(with very high-frequency around 1020 Hz) caused by ultra-strong EM radiation(in the radiation-dominated phase of GRB fireballs) interacting with super-high magnetar surface magnetic fields(~1011 T).By certain parameters of distance and power, the Gamma-HFGWs would have far field energy density ?gw around10-6, and they would cause perturbed signal EM waves of~10-20 W/m2 in a proposed HFGW detection system based on the EM response to GWs. Specially, Gamma-HFGWs would possess distinctive envelopes with characteristic shapes depending on the particular structures of surface magnetic fields of magnetars, which could be exclusive features helpful to distinguish them from background noise. Results obtained suggest that magnetars could be involved in possible astrophysical EM sources of GWs in the very high-frequency band, and Gamma-HFGWs could be potential targets for observations in the future.展开更多
We are in this document asking if Octonionic gravity [1] is relevant near the Planck scale. Furthermore, we ask if gravitational waves would be generated during the initial phase, of the universe when an increase in d...We are in this document asking if Octonionic gravity [1] is relevant near the Planck scale. Furthermore, we ask if gravitational waves would be generated during the initial phase, of the universe when an increase in degrees of freedom that have in setting is used. We demonstrate how a Gaussian mapping, combined with a strange attractor will enable quantum gravity to form. The key development would be in using a strange attractor [2]. In addition, the supposition R. Penrose made: is presented with a more traditional cosmological constant, not varying over time? Does the Penrose model directly allow us to form a much simpler Entropy expression? However, in doing so, we make note of how a quartic phase transition initially may impose a level of precision in parameters impossible to verify with present experimental equipment.展开更多
Gravitational wave high-energy Electromagnetic Counterpart All-sky Monitor(GECAM)is a constellation with four instruments(launch date):GECAM-A/B(10 December 2020),GECAM-C(27 July 2022)and GECAM-D(13 March 2024),which ...Gravitational wave high-energy Electromagnetic Counterpart All-sky Monitor(GECAM)is a constellation with four instruments(launch date):GECAM-A/B(10 December 2020),GECAM-C(27 July 2022)and GECAM-D(13 March 2024),which are dedicated to monitoring gamma-ray transients in all-sky.The primary science objectives of GECAM include Gamma-Ray Bursts(GRBs),Soft Gamma-ray Repeaters(SGRs),high energy counterparts of Gravitation Wave(GW)and Fast Radio Burst(FRB),Solar Flares(SFLs),as well as Terrestrial Gamma-ray Flashes(TGFs)and Terrestrial Electron Beams(TEBs).A series of observations and research have been made since the launch of GECAM-A/B.GECAM observations provide new insights into these highenergy transients,demonstrating the unique role of GECAM in the“multi-wavelength,multi-messenger”era.展开更多
We ask if Octonionic quantum gravity is a relevant consideration near the Planck scale. Furthermore, we examine whether gravitational waves would be generated during the initial phase, , of the universe when triggered...We ask if Octonionic quantum gravity is a relevant consideration near the Planck scale. Furthermore, we examine whether gravitational waves would be generated during the initial phase, , of the universe when triggered by changes in spacetime geometry;i.e. what role would an increase in degrees of freedom have in setting the conditions during , so that the result of these conditions can be observed and analyzed by a gravitational detector. The micro physics interaction is due to the formation of a pre Planckian to Planckian space time transition in spatial dimensions at and near the Planck dimensional values, i.e. 10–33 centimeters in spatial dimensions. This transition would be abrupt and arising in micro physics regimes of space time.展开更多
Our assumptions in this paper are for a more traditional cosmological constant, not varying over time, which has the result of forming a much simpler entropy expression. But in doing so, we have to make note of how a ...Our assumptions in this paper are for a more traditional cosmological constant, not varying over time, which has the result of forming a much simpler entropy expression. But in doing so, we have to make note of how a quartic phase transition initially may impose a level of precision in parameters impossible to verify with present experimental equipment. We also have the conundrum of how this may be linked to macroscopic interpretation of pressure in the initial phases of the universe, using black hole physics in Pre Planckian to Planckian physics domains.展开更多
文摘Under most models of the early universe evolution, high-frequency gravitational waves (HFGWs) were produced. They are referred to as “relic” high-frequency gravitational waves or HFRGWs and their detection and measurement could provide important information on the origin and development of our Universe – information that could not otherwise be obtained. So far three instruments have been built to detect and measure HFRGWs, but so far none of them has achieved the required sensitivity. This paper concerns another detector, originally proposed by Baker in 2000 and patented, which is based upon a recently discovered physical effect (the Li effect);this detector has accordingly been named the “Li-Baker detector.” The detector has been a joint development effort by the P. R. China and the United States HFGW research teams. A rigorous examination of the detector’s performance is important in the ongoing debate over the value of attempting to construct a Li-Baker detector and, in particular, an accurate prediction of its sensitivity in the presence of significant noise will decide whether the Li-Baker detector will be capable of detecting and measuring HFRGWs. The potential for useful HFRGW measurement is theoretically confirmed.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11075224 and 11375279)the Foundation of China Academy of Engineering Physics(Grant Nos.2008 T0401 and T0402)
文摘Various cosmology models, brane oscillation scenarios, interaction of interstellar plasma with intense electromagnetic radiation, and even high-energy physics experiments (e.g., Large Hadron Collider (LHC)) all predict high frequency gravitational waves (HFGWs, i.e., high-energy gravitons) in the microwave band and higher frequency region, and some of them have large energy densities. Electromagnetic (EM) detection to such HFGWs would be suitable due to very high frequencies and large energy densities of the HFGWs. We review several typical EM detection schemes, i.e., inverse Gertsenshtein effect (G-effect), coupling of the inverse G effect with a coherent EM wave, coupling of planar superconducting open cavity with a static magnetic field, cylindrical superconducting closed cavity, and the EM sychro-resonance system, and discuss related minimal detectable amplitudes and sensitivities. Furthermore, we give some new ideas and improvement ways enhancing the possibility of measuring the HFGWs. It is shown that there is still a large room for improvement for those schemes to approach and even reach up the requirement of detection of HFGWs expected by the cosmological models and high-energy astrophysical process.
文摘Three advances are proposed as a pathway to the cataclysmic event of our first encounter with intelligent extraterrestrial beings. First, discovery of very large numbers of extraterrestrial planets, “exoplanets” (possibly as many as10<sup>23</sup> in our Universe);second, introduction of electronic components into the human body evolving into a cybernetic and biological “cyborg,” a model for an extraterrestrial being Cyborgs might allow advanced civilizations to endure hundreds of thousands of years. Third, the recent development of high-frequency gravitational wave (HFGW) detectors, the communication means of choice for an advanced cyborg civilization since they are not easily absorbed like electromagnetic radiation. Six HFGW detectors are presented for application to our first encounter with intelligent extraterrestrial beings. Numerical estimates are made for the failure of extraterrestrial civilizations such that no two exist at the same time (Fermi’s Paradox). It is concluded that there might remain at least ≈1.48 × 10<sup>8</sup> Worlds intercommunicating with HFGWs at any one time in any one region of our Universe. The predicted form of extraterrestrial beings is by means of animaginary, but based upon comprehensively documented and detailed projection of the evolution of “Earthling” homosapiens, to become “cyborgs.” It is proposed that such long-living cyborg forms of intelligent beings would be encountered by us. The first cataclysmic encounter with them is expected to be interception of their interstellar communications. The predicted frequency of intercepted messages under one set of assumptions is at least 1500 per day. After decoding the intercepted messages, keys may be found to improve vastly the present and future quality of life for us earthlings. Advanced beings might utilize direct brain-to-brain communication and it is concluded that research into brain-to-brain communication and HFGW detection are encouraged.
文摘Up to the present time gravitational-wave detectors, such as LIGO and Virgo, have been sensitive to frequencies on the order of a few thousand to a small fraction of an Hz. They have been most effective in the study of black-hole mergers. We suggest that high-frequency relic gravitational wave (HFRGW) detectors be developed, especially the Li-Baker HFRGW detector, in the gigahertz and higher frequency range. We believe collecting cosmological, primordial observational data especially generated during the first few seconds after the beginning of our Universe is extremely important. One motivation for this paper is, therefore, that we are confident that observation of relic gravitational waves will provide vital information about the birth of our Universe and its early dynamical evolution. Other astrophysical applications of HFRGW detectors involve the entropy growth of the early Universe, an ability to study alternatives to inflation and to provide clues about the symmetries underlying new physics at the highest energies. A working hypothesis or theory, based upon the rollout of our Universe from infinitesimal Planck Length and Planck Time is presented. This theory involves the rapid motion of time and matter during that early time having frequencies on the order of trillions of cycles per second or more. Several alternative HFRGW detectors are described and the proposed Li-Baker HFRGW detector, which is theoretically sensitive to GW amplitudes, A, as small as 10-32, is discussed in detail. Such sensitivity may provide a means for verifying or falsifying the rollout of our Universe working hypothesis. Essentially a combination of theory and experimentation is presented. It is recommended that plans and detailed specifications for the Li-Baker HFRGW detector be prepared in order to expedite its fabrication.
文摘We claim that the linking of a shrinking prior universe to our own via a wormhole bridge solution of about ten to the minus forty four power seconds permits the formation of a short-term quintessence scalar field. Symmetries allow for creating high-frequency gravitational waves at the onset of inflation, which has consequences in our present cosmological era. This instantaneous energy transfer between prior to present universes permits relic graviton production which we claim is a viable candidate for future propulsion technologies in space craft design. The Big Bang started as the passage of thermal energy from an existing universe into ours resulting in another Big Bang, and helps us understand how a graviton burst can occur in the first place.
基金supported by the National Basic Research Program of China (Grant No 2003CB716300)the National Natural Science Foundation of China (Grant No 10575140)CAEP Foundation (Grant Nos 2008 T0401 and 2008 T0402)
文摘This paper discusses the basic categories of noise in detecting high frequency gravitational waves in the microwave band (-0.1-10GHz), which contain shot noise from the laser and the thermal radiation photons, thermal noise from statistical fluctuation of the thermal photons and fluctuation of the temperature, radiation press noise on the fractal membrane, the noise caused by the scattering of the Gaussian Beam (GB) in the detecting tube and noise in the microwave radiometers. The analysis shows that a reasonable signal-to-noise ratio may be achieved for a detecting device with the fixed power of GB (105 W), only when the temperature of the environment is no more than T=I K, and the optimal length of the microwave radiometers is about 0.3 m.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11205254 and 61501069the Fundamental Research Funds for the Central Universities under Grant No 106112016CDJXY300002
文摘The high frequency gravitational waves (around lOS-lO12 Hz) could interact with a specially designed electro- magnetic resonance system. It is found that the power of transverse perturbative photon flux (PPF) of an electromagnetic resonance system can be improved significantly by virtue of an astigmatic Caussian beam. Cor- respondingly the signal-to-noise ratio (SNR) would also be improved. When the eccentric ratio of waist satisfying w0x : w0y 〉 1, the peak value of signal photon flux could be raised by 2-4 times with typical systematic parameters, while the background photon flux would be depressed. Therefore, the ratio of transverse PPF to background photon flux (i.e., SNR) can be further improved 3-8 times with dimensionless amplitude of relic gravitational wave ht = 10-36.
基金the National Basic Research Program of China (No.2003 CB 716300)the National Natural Science Foundation of China (No.10575140)+1 种基金the Nature Science Foundation of Chongqing (No. 8562)the Foundation of China Academy of Engineering Physics.
文摘To describe properties of the high frequency gravitational wave (HFGW) propagating through the vacuum gravitational field in Robertson-Walker background space-time, we calculated its energy momentum pseudo-tensor (EMPT) in the limit of short wavelengths by taking the Brill-Hartle average on the second order perturbation of the Einstein tensor over several wavelengths. By rewriting the EMPT as a form of perfect fluid, the dynamical back-reaction of HIFGW on the background spacetime was discussed. The result shows that the energy density of HFGW, which is in the gauge we chose, is positive definite. The HFGW serves as a source for curving the background space-time and affects the dynamical evolution and time evolution of the scale factor of the Robertson-Walker metric.
文摘Note, that micro black holes last within micro seconds, and that we wish to ascertain how to build, in a laboratory, a black hole, which may exist say at least up to 10^?1 seconds and provide a test bed as to early universe gravitational theories. First of all, it would be to determine, if the mini black hole bomb, would spontaneously occur, unless the Kerr-Newmann black hole were carefully engineered in the laboratory. Specifically, we state that this paper is modeling the creation of an actual Kerr Newman black hole via laser physics, or possibly by other means. We initiate a model of an induced Kerr-Newman black Holes, with specific angular momentum J, and then from there model was to what would happen as to an effective charge, Q, creating an E and B field, commensurate with the release of GWs. The idea is that using a frame of reference trick, plus E + i B = ?function of the derivative of a complex valued scalar field, as given by Appell, in 1887, and reviewed by Whittaker and Watson, 1927 of their “A Course of Modern Analysis” tome that a first principle identification of a B field, commensurate with increase of thermal temperature, T, so as to have artificially induced GW production. This is compared in part with the Park 1955 paper of a spinning rod, producing GW, with the proviso that both the spinning rod paper, and this artificial Kerr-Newman Black hole will employ the idea of lasers in implementation of their respective GW radiation. The idea is in part partly similar to an idea the author discussed with Dr. Robert Baker, in 2016 with the difference that a B field would be generated and linked to effects linked with induced spin to the Kerr-Newman Black hole. We close with some observations about the “black holes have no hair” theorem, and our problem. Citing some recent suppositions that this “theorem” may not be completely true and how that may relate to our experimental situation. We close with observations from Haijicek, 2008 as which may be pertinent to Quantization of Gravity. Furthermore as an answer to questions raised by a referee, we will have a final statement as to how this problem is for a real black hole being induced, and answering his questions in his review, which will be included in a final appendix to this paper. The main issue which is now to avoid the black hole bomb effect which would entail an explosion of a small black hole in a laboratory. Furthermore as an answer to questions raised by a referee, we will have a final statement as to how this problem is for a real black hole being induced, and answering his questions in his review, which will be included in a final appendix to this paper. In all, the main end result is to try to avoid the so called black hole bomb effect, where a mini black hole would explode in a laboratory setting within say 10^?16 or so seconds, i.e. the idea would be to have a reasonably stable configuration within put laser energy, but a small mass, and to do it over hopefully 10^15 or more times longer than the 10^?16 seconds where the mini black hole would quickly evaporate. I.e. a duration of say up to 10^?1 seconds which would provide a base line as to astrophysical modeling of a Kerr-Newman black hole.
文摘In a prior paper, the d = 1 to d = 7 sense of AdS/CFT solutions were described in general whereas we did not introduce commentary as to GW polarization of gravitational radiation from a worm hole. We will discuss GW polarization, for d = 1 and in addition say concrete facts as to the strength of the GW radiation, and admissible frequencies. First off, the term Δt is for the smallest unit of time step. Note that in the small Δt limit for d = 1 we avoid any imaginary time no matter what the sign of Ttemp is. And when d = 1 in order to have any solvability one would need X = Δt assumed to be infinitesimal. To first approximation, we set X = Δt as being of Planck time, 10-31 or so seconds, in duration.
基金Supported by National Natural Science Foundation of China(11305181,11322545,11335012)Open Project Program of State Key Laboratory of Theoretical Physics,Institute of Theoretical Physics,Chinese Academy of Sciences,China(Y5KF181CJ1)
文摘The power spectrum of primordial tensor perturbations Pt increases rapidly in the high frequency region if the spectral index nt 〉 0. It is shown that the amplitude of relic gravitational waves ht (5×109 Hz) varies from 10-36 to 10-25 while rtt varies from -6.25 × 10-3 to 0.87. A high frequency gravitational wave detector proposed by F,-Y, Li detects gravitational waves through observing the perturbed photon flux that is generated by interaction between relic gravitational waves and electromagnetic field. It is shown that the perturbative photon flux N1x (5 × 109 Hz) varies from 1.40× 10-4 s-i to 2.85× 107 s-i while nt varies from -6.25 ×10-3 to 0.87, Correspondingly, the ratio of the transverse perturbative photon flux N1x to the background photon flux varies from 10-28 to 10-16.
基金Supported by National Natural Science Foundation of China(11605015,11375279,11205254,11647307)the Fundamental Research Funds for the Central Universities(106112017CDJXY300003,106112017CDJXFLX0014)
文摘Extremely powerful astrophysical electromagnetic(EM) systems could be possible sources of highfrequency gravitational waves(HFGWs). Here, based on properties of magnetars and gamma-ray bursts(GRBs), we address "Gamma-HFGWs"(with very high-frequency around 1020 Hz) caused by ultra-strong EM radiation(in the radiation-dominated phase of GRB fireballs) interacting with super-high magnetar surface magnetic fields(~1011 T).By certain parameters of distance and power, the Gamma-HFGWs would have far field energy density ?gw around10-6, and they would cause perturbed signal EM waves of~10-20 W/m2 in a proposed HFGW detection system based on the EM response to GWs. Specially, Gamma-HFGWs would possess distinctive envelopes with characteristic shapes depending on the particular structures of surface magnetic fields of magnetars, which could be exclusive features helpful to distinguish them from background noise. Results obtained suggest that magnetars could be involved in possible astrophysical EM sources of GWs in the very high-frequency band, and Gamma-HFGWs could be potential targets for observations in the future.
文摘We are in this document asking if Octonionic gravity [1] is relevant near the Planck scale. Furthermore, we ask if gravitational waves would be generated during the initial phase, of the universe when an increase in degrees of freedom that have in setting is used. We demonstrate how a Gaussian mapping, combined with a strange attractor will enable quantum gravity to form. The key development would be in using a strange attractor [2]. In addition, the supposition R. Penrose made: is presented with a more traditional cosmological constant, not varying over time? Does the Penrose model directly allow us to form a much simpler Entropy expression? However, in doing so, we make note of how a quartic phase transition initially may impose a level of precision in parameters impossible to verify with present experimental equipment.
文摘Gravitational wave high-energy Electromagnetic Counterpart All-sky Monitor(GECAM)is a constellation with four instruments(launch date):GECAM-A/B(10 December 2020),GECAM-C(27 July 2022)and GECAM-D(13 March 2024),which are dedicated to monitoring gamma-ray transients in all-sky.The primary science objectives of GECAM include Gamma-Ray Bursts(GRBs),Soft Gamma-ray Repeaters(SGRs),high energy counterparts of Gravitation Wave(GW)and Fast Radio Burst(FRB),Solar Flares(SFLs),as well as Terrestrial Gamma-ray Flashes(TGFs)and Terrestrial Electron Beams(TEBs).A series of observations and research have been made since the launch of GECAM-A/B.GECAM observations provide new insights into these highenergy transients,demonstrating the unique role of GECAM in the“multi-wavelength,multi-messenger”era.
文摘We ask if Octonionic quantum gravity is a relevant consideration near the Planck scale. Furthermore, we examine whether gravitational waves would be generated during the initial phase, , of the universe when triggered by changes in spacetime geometry;i.e. what role would an increase in degrees of freedom have in setting the conditions during , so that the result of these conditions can be observed and analyzed by a gravitational detector. The micro physics interaction is due to the formation of a pre Planckian to Planckian space time transition in spatial dimensions at and near the Planck dimensional values, i.e. 10–33 centimeters in spatial dimensions. This transition would be abrupt and arising in micro physics regimes of space time.
文摘Our assumptions in this paper are for a more traditional cosmological constant, not varying over time, which has the result of forming a much simpler entropy expression. But in doing so, we have to make note of how a quartic phase transition initially may impose a level of precision in parameters impossible to verify with present experimental equipment. We also have the conundrum of how this may be linked to macroscopic interpretation of pressure in the initial phases of the universe, using black hole physics in Pre Planckian to Planckian physics domains.