High Nb containing TiAl alloy was fabricated in argon atmosphere by reactive hot pressing process. Reaction mechanism was investigated by means of microstructural analyses and thermodynamic calculations. The results s...High Nb containing TiAl alloy was fabricated in argon atmosphere by reactive hot pressing process. Reaction mechanism was investigated by means of microstructural analyses and thermodynamic calculations. The results show that it is feasible to prepare high Nb containing TiAl alloy with fine lamellar colonies by reactive hot pressing process. The reaction between Ti and Al powders is dominant in Ti-Al-Nb system. Nb powders dissolve into the Ti-Al matrix by diffusion. Pore nests are formed in situ after Nb powders diffusion. The hot pressing atmosphere is optimized by thermodynamic calculations. Vacuum or argon protective atmosphere should be adopted.展开更多
The microstructure evolution of as-rolled Ti-45Al-9Nb-0.3Y alloy as well as the nanohardness ofβ/B2 matrix was investigated by means of scanning electron microscopy (SEM) in backscattered electron mode (BSE) mode, tr...The microstructure evolution of as-rolled Ti-45Al-9Nb-0.3Y alloy as well as the nanohardness ofβ/B2 matrix was investigated by means of scanning electron microscopy (SEM) in backscattered electron mode (BSE) mode, transmission electron microscopy (TEM) and nanoindentation. This high Nb containing TiAl based alloy was rolled with 50%, 60%, 65% reduction, respectively. Omega phase precipitated in B2 phase with an orientation relationship of {110}β//{1120}ω and <111>β//<0001>ω. Moreover, with the increase of de-formation reduction, rod-like structure which was formed inγ grain transformed from (α2+γ) lamellae structure intoα2 phase only. Addi-tionally, nanoinentation experiment revealed that the precipitation hardening ofω phase increased the hardness ofβ/B2 phase.展开更多
基金Project(704008) supported by the Key Grant Project of Chinese Ministry of Education Project(NCET-04-01017) supported by the Program for New Century Excellent Talents in University, China
文摘High Nb containing TiAl alloy was fabricated in argon atmosphere by reactive hot pressing process. Reaction mechanism was investigated by means of microstructural analyses and thermodynamic calculations. The results show that it is feasible to prepare high Nb containing TiAl alloy with fine lamellar colonies by reactive hot pressing process. The reaction between Ti and Al powders is dominant in Ti-Al-Nb system. Nb powders dissolve into the Ti-Al matrix by diffusion. Pore nests are formed in situ after Nb powders diffusion. The hot pressing atmosphere is optimized by thermodynamic calculations. Vacuum or argon protective atmosphere should be adopted.
基金supported by the National Natural Science Foundation of China(51504163)the State Key Laboratory for Advanced Metal and Materials foundation(2014-ZD06,2013-ZD06)+1 种基金the Special/Youth Foundation of Taiyuan University of Technology(2013T004,2013T003)the Qualified Personnel Foundation of Taiyuan University of Technology(tyut-rc201342a,tyut-rc201343a)
文摘The microstructure evolution of as-rolled Ti-45Al-9Nb-0.3Y alloy as well as the nanohardness ofβ/B2 matrix was investigated by means of scanning electron microscopy (SEM) in backscattered electron mode (BSE) mode, transmission electron microscopy (TEM) and nanoindentation. This high Nb containing TiAl based alloy was rolled with 50%, 60%, 65% reduction, respectively. Omega phase precipitated in B2 phase with an orientation relationship of {110}β//{1120}ω and <111>β//<0001>ω. Moreover, with the increase of de-formation reduction, rod-like structure which was formed inγ grain transformed from (α2+γ) lamellae structure intoα2 phase only. Addi-tionally, nanoinentation experiment revealed that the precipitation hardening ofω phase increased the hardness ofβ/B2 phase.