In order to understand the stress corrosion behavior of super-high strength aluminum alloys by spray forming, different aluminum alloys by different heat treatment was made. The results showed that the alloy with peak...In order to understand the stress corrosion behavior of super-high strength aluminum alloys by spray forming, different aluminum alloys by different heat treatment was made. The results showed that the alloy with peak aging has the most sensitive stress corrosion cracking, the crack can even be seen using eyes;the alloys with two step aging were better than one step aging alloys, the alloys has not been found stress corrosion cracking.展开更多
A high Fe containing aluminum matrix filler metal for hardfacing aluminum silicon alloys has been developed by using iron,nickel,and silicon as the major strengthening elements,and by measuring mechanical properties...A high Fe containing aluminum matrix filler metal for hardfacing aluminum silicon alloys has been developed by using iron,nickel,and silicon as the major strengthening elements,and by measuring mechanical properties,room temperature and high temperature wear tests,and microstructural analysis.The filler metal,which contains 3.0%-5.0% Fe and 11.0%-13.0% Si,exhibits an excellent weldability.The as cast and as welded microstructures for the filler metal are of uniformly distribution and its dispersed network of hard phase is enriched with Al Si Fe Ni.The filler metal shows high mechanical properties and wear resistance at both room temperature and high temperatures.The deposited metal has a better resistance to impact wear at 220℃ than that of substrate Al Si Mg Cu piston alloy;at room temperature,the deposited metal has an equivalent resistance to slide wear with lubrication as that of a hyper eutectic aluminum silicon alloy with 27% Si and 1% Ni.展开更多
An inductively coupled plasma (ICP) discharge and its etching behaviors for aluminum alloys were investigated in this report. A radio frequency power supply was used for plasma generation. The unique hardware configur...An inductively coupled plasma (ICP) discharge and its etching behaviors for aluminum alloys were investigated in this report. A radio frequency power supply was used for plasma generation. The unique hardware configuration enabled one to control ion energy separately from plasma density. Plasma properties were measured with a Langmuir probe. Electron temperature, plasma potential and plasma density were found to be comparable with those reported from Electron Cyclotron Resonance (ECR) and other types of reactors[1].A mixture of HBr and chlorine gases were used for this aluminum etch study. Experimental matrices were designed with Response Surface Methodology (RSM) to analyze the process trends versus etch parameters, such as source power, bias power and gas composition. An etch rate of 8500A to 9000A per minute was obtained at 5 to 15 mTorr pressure ranges. Anisotropic profiles with high photoresist selectivity (5 to 1) and silicon dioxide selectivity greater than 10 were achieved with HBr addition into chlorine plasma.Bromine-containing chemistry for an aluminum etch in a low pressure ICP discharge showed great potential for use in ULSI fabrication. In addition, the hardware used was very simple and the chamber size was much smaller than other high density plasma sources.展开更多
Microstructure evolution and dislocation configurations in nanostructured Al–Mg alloys processed by high pressure torsion (HPT) were analyzed by transmission electron microscopy (TEM) and high-resolution TEM (HR...Microstructure evolution and dislocation configurations in nanostructured Al–Mg alloys processed by high pressure torsion (HPT) were analyzed by transmission electron microscopy (TEM) and high-resolution TEM (HRTEM). The results show that the grains less than 100 nm have sharp grain boundaries (GBs) and are completely free of dislocations. In contrast, a high density of dislocation as high as 1017 m^-2 exists within the grains larger than 200 nm and these larger grains are usually separated into subgrains and dislocation cells. The dislocations are 60° full dislocations with Burgers vectors of 1/2〈110〉and most of them appear as dipoles and loops. The microtwins and stacking faults (SFs) formed by the Shockley partials from the dissociation of both the 60° mixed dislocation and 0° screw dislocation in ultrafine grains were simultaneously observed by HRTEM in the HPT Al–Mg alloys. These results suggest that partial dislocation emissions, as well as the activation of partial dislocations could also become a deformation mechanism in ultrafine-grained aluminum during severe plastic deformation. The grain refinement mechanism associated with the very high local dislocation density, the dislocation cells and the non-equilibrium GBs, as well as the SFs and microtwins in the HPT Al-Mg alloys were proposed.展开更多
Flexibility of the CSIR-RCS, induction stirring with simultaneous air cooling process, in combination with high pressure die casting is successfully demonstrated by semi-solid rheocasting of plates performed on commer...Flexibility of the CSIR-RCS, induction stirring with simultaneous air cooling process, in combination with high pressure die casting is successfully demonstrated by semi-solid rheocasting of plates performed on commercial 2024, 6082 and 7075 wrought aluminum alloys. Tensile properties were measured for the above mentioned rheocast wrought aluminum alloys in the T6 condition. The results showed that tensile properties were close to or even in some cases exceeded the minimum specifications. The yield strength and elongation of rheocast 2024-T6 exceeded the minimum requirements of the wrought alloy in the T6 condition but the ultimate tensile strength achieved only 90% of the specification because the Mg content of the starting alloy was below the commercial alloy specification. The strengths of rheocast 6082-T6 exceeded all of the wrought alloy T6 strength targets but the elongation only managed 36% of the required minimum due to porosity, caused by incipient melting during solution heat treatment, and the presence of fine intermetallie needles in the eutectic. The yield strength of rheocast 7075 exceeded the required one and the ultimate tensile strength also managed 97% of the specification; while the elongation only reached 46% of the minimum requirement also due to incipient melting porosity caused during the solution heat treatment process.展开更多
The morphology changes of both Fe-containing intermetallic compounds and the primary Si phase of Al-20Si-2Fe- 2Cu-0.4Mg-1.0Ni-0.5Mn (mass fraction, %) alloy produced by semi-solid rheo-diecasting were studied. The s...The morphology changes of both Fe-containing intermetallic compounds and the primary Si phase of Al-20Si-2Fe- 2Cu-0.4Mg-1.0Ni-0.5Mn (mass fraction, %) alloy produced by semi-solid rheo-diecasting were studied. The semi-solid slurry of high silicon aluminum alloy was prepared by direct ultrasonic vibration (DUV) which was imposed on the alloy near the liquidus temperature for about 2 rain. Then, standard test samples of 6.4 mm in diameter were formed by semi-solid rheo-diecasting. The results show that the DUV treatment suppresses the formation of needle-like ,β-Al5(Fe,Mn)Si phase, and the Fe-containing intermetallic compounds exist in the form of fine Al4(Fe, Mn)Si2 particles. Additionally, the primary Si grows up as fine and round particles with uniform distribution in α(Al) matrix of this alloy under DUV treatment. The tensile strengths of the samples at the room temperature and 573 K are 230 MPa and 145 MPa, respectively. The coefficient of thermal expansion (CTE) between 25 ℃ and 300 ℃ is 16.052 8×10^-6 ℃^-1, and the wear rate is 1.55%. The hardness of this alloy with 2% Fe reaches HB146.3. It is discovered that modified morphology and uniform distribution of the Fe-containing intermetallic compounds and the primary Si phase are the main reasons for reducing the CTE and increasing the wear resistance of this alloy.展开更多
The effect of fiber laser on MIG arc was investigated with 8 mm 7075-T6 high strength aluminum alloy as base material.The arc shape,droplet transfer form and electrical signal in the process of MIG welding and laser-M...The effect of fiber laser on MIG arc was investigated with 8 mm 7075-T6 high strength aluminum alloy as base material.The arc shape,droplet transfer form and electrical signal in the process of MIG welding and laser-MIG hybrid welding were analyzed.The stability of the hybrid welding process was evaluated by standard deviation analysis.The results show that with the increase of laser power,a large number of laser-induced plasma enters the arc column area,providing more conductive channels,which makes the heat of MIG arc more concentrated and the short circuit transition disappear.Due to the continuous effect of laser,the keyhole becomes a continuous electron emission source,and a stable cathode spot will be formed near the keyhole,which enhances the stability of MIG arc at the base current state.By using the method of standard deviation analysis,the voltage standard deviation of single MIG welding arc and laser-MIG hybrid arc within 4 seconds was calculated.The standard deviation of single MIG arc voltage was 1.05,and the standard deviation of MIG arc voltage in laser-MIG hybrid welding was 0.71–0.86,so the hybrid welding process was more stable.展开更多
Numerical analysis is critically important to understanding the complex deformation mechanics that occur during sheet forming processes.It has been widely used in simulation of sheet metal forming processes at room te...Numerical analysis is critically important to understanding the complex deformation mechanics that occur during sheet forming processes.It has been widely used in simulation of sheet metal forming processes at room temperature in the automotive industry.However,material at elevated temperature behaves more differently than at room temperature and specific material parameters and models need to be developed for the simulation of warm forming.Based on the experimental investigation of material behavior of high strength aluminum alloy 7075(AA7075),constitutive equations with strain rate sensitivity at 140,180 and 220 ℃ are developed.Anisotropic yield criterion Barlat 89 is used in the simulation.Warm forming of limit dome height tests and limit drawing ratio tests of AA7075 at 140,180 and 220℃are performed.Forming limit diagrams developed from experiment at several elevated temperatures in the previous study are used to predict the failure in the simulation results.Punch force and displacement predicted from simulation are compared with the experimental data.Simulation results agree with experimental results,so the developed material model can be used to accurately predict material behavior during isothermal warm forming of the AA7075-T6 alloy.展开更多
Dissimilar material joining of 6008 aluminum alloy to H220 YD galvanized high strength steel was performed by resistance spot welding with especial electrodes that were a flat tip electrode against the steel surface a...Dissimilar material joining of 6008 aluminum alloy to H220 YD galvanized high strength steel was performed by resistance spot welding with especial electrodes that were a flat tip electrode against the steel surface and a domed tip electrode upon the aluminum alloy surface. An intermetallic compound layer composed of Fe2Al5 and FeAl3 was formed at the steel/ aluminum interface in the welded joint. The thickness of the intermetallic compound layer increased with increasing welding current and welding time, and the maximum thickness being 7. 0 μm was obtained at 25 kA and 300 ms. The weld nugget diameter and tensile shear load of the welded joint had increased tendencies first with increasing welding current ( 18 -22 kA) and welding time ( 50 - 300 ms), then changed little with further increasing welding current ( 22 - 25 kA) and welding time (300 -400 ms). The maximum tensile shear load reached 5.4 kN at 22 kA and 300 ms. The welded joint fractured through brittle intermetallic compound layer and aluminum alloy nugget.展开更多
Deformation twins and stacking faults were observed in nanostructure A1-Mg alloys subjected to high pressure torsion. These observations are surprising because deformation twinnings have never been observed in their c...Deformation twins and stacking faults were observed in nanostructure A1-Mg alloys subjected to high pressure torsion. These observations are surprising because deformation twinnings have never been observed in their coarse-grained counterparts under normal conditions. Experimental evidences are introduced on non-equilibrium grain boundaries, deformation twinnings and partial dislocation emissions from grain boundaries. Some of these features can be explained by the results reported from molecular-dynamics simulations of pure FCC metals. Special emphasis is laid on the recent observations of high density hexagonal and rhombic shaped nanostructures with an average size of 3 nm in the A1-Mg alloys processed by high pressure torsion. A possible formation process of these nanostructures is proposed based on molecular-dynamics simulations.展开更多
20 mm thick plates of 2519-T87 high strength aluminum alloy have been welded.The effects of the compositions of filler wires,the heat input and the compositions of shielding gas on the mechanical properties and micros...20 mm thick plates of 2519-T87 high strength aluminum alloy have been welded.The effects of the compositions of filler wires,the heat input and the compositions of shielding gas on the mechanical properties and microstructure of the welded joint have been investigated.The results indicate that finer microstructure,better mechanical properties and higher value of hardness of HAZ can be obtained by using lower heat input.The use of Ar/He mixed shielding gas has several advantages over pure Ar shielding gas.With the increase of the proportion of He in the mixed shielding gas, the grain size of the weld metal as well as porosity susceptibility decreases.When the volume ratio of He to Ar reaches 7:3,the porosity and the grain size of weld metal reach the minimum,and the porosity can be further reduced by filling some CO2.展开更多
This article mainly discussed bulk material lHvl^ared by powder metallurgy, and the commercial 2024 aluminum alloy powder and FeNiCrCoA13 high entropy alloy powder (both produced by argon gas atomization process) we...This article mainly discussed bulk material lHvl^ared by powder metallurgy, and the commercial 2024 aluminum alloy powder and FeNiCrCoA13 high entropy alloy powder (both produced by argon gas atomization process) were ball-milled for different hours. The prepared powder was consolidated by hot extrusion method. The microstruetures of the milled powder and bulk alloy were examined by X - Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The thermal stability was tested by differential scanning calorimetry (DSC). Mechanical properties of the extruded alloy were examined by Vickers hardness tester and mechanical testing machine. The results show that after milling, the mixed particle sizes and microstructures of the alloy powder change obviously. The compressive strength of the extruded alloy has reached 580 MPa under certain conditions of milling time and composition.展开更多
Nickel-coated 45 steel studs and 6061 aluminum alloy with 4047 A1 alloy foil as filler metal were joined by using high frequency induction brazing. The microstrueture of Fe/A1 brazed joint was studied by means of opti...Nickel-coated 45 steel studs and 6061 aluminum alloy with 4047 A1 alloy foil as filler metal were joined by using high frequency induction brazing. The microstrueture of Fe/A1 brazed joint was studied by means of optical microscopy (OM), scanning electron microscope (SEM), energy dispersive X-ray (EDX), and X-ray diffraction (XRD). Results showed that 45 steel stud and 6061 aluminum alloy could be successfully joined by high frequency induction brazing with proper processing parameters. The bonding strength of the joint was of the order of 88 MPa. Ni coating on steel stud successfully avoided the generation of Fe-AI intermetallic compound which is brittle by blocking the contact between A1 and Fe. Intermetallic compounds, i e, AI3Ni2, AlmNi0.9 and A10.3Fe3Si0.7 presented in AI side, FeNi and Fe-A1-Ni ternary eutectic structure were formed in Fe side. The micro-hardness in intermetallic compound layer was 313 HV. The joint was brittle fractured in the intermetallic compounds layer of A1 side, where plenty of A13Ni2 intermetallie compounds were distributed continuously.展开更多
To avoid the angular deformation of aluminum alloy T-joint weldments, a new method named welding with auxiliary heat source is proposed. The welding simulation is performed with the commercial finite element software ...To avoid the angular deformation of aluminum alloy T-joint weldments, a new method named welding with auxiliary heat source is proposed. The welding simulation is performed with the commercial finite element software Abaqus and FORTRAN programme encoding a special conical heat source with Gaussian volumetric distribution of flux. The influence of the local model on the temperature, residual stress, and welding deformation distributions is investigated. The findings show that angular deformation achieved through numerical computation completely consists with the experimental result which has proved the effectiveness of the finite element methods developed. Various measurements performed on small-scale welded test specimens provide a data base of experimental results that serves as a bench mark for qualification of the simulation result. Finally, the residual stress and strain states in a T-joint are predicted.展开更多
Based on the investigation of the tensile properties of spray formed ultra-high strength Al10.8Zn2.9Mg1.9Cu alloys, the high-cycle fatigue properties under different theoretical stress concentration factors were inves...Based on the investigation of the tensile properties of spray formed ultra-high strength Al10.8Zn2.9Mg1.9Cu alloys, the high-cycle fatigue properties under different theoretical stress concentration factors were investigated, the fatigue fracture surfaces and microstructures were observed, and the fatigue mechanism was discussed. The results indicate that the ultimate tensile strength of spray formed Al10.8Zn2.9Mg1.9Cu alloys can reach up to 730?740 MPa, and the elongation is about 8%?10% under the condition of two-stage aging treatment. For the stress ratio is 0.1, the maximum stress for 107 cycles is over 400 MPa and 120 MPa, when the theoretical stress concentration factor is 1 and 3, respectively.展开更多
The hardness, the tensile and the high-cycle fatigue(HCF) performances of 7075 aluminum alloy were investigated under temper T651, solution treated at 380 ℃ for 0.5 h and aged at different temperatures(150, 170, 1...The hardness, the tensile and the high-cycle fatigue(HCF) performances of 7075 aluminum alloy were investigated under temper T651, solution treated at 380 ℃ for 0.5 h and aged at different temperatures(150, 170, 190 ℃) for 10 hours. The optimal microstructures and the fatigue fracture surfaces were observed. The results show that the hardness and the tensile performances are at their optimum at T651, but the fatigue life is the shortest. The hardness and the elongation are the lowest after solution treatment. With the aging temperature increasing(150-190 ℃), the HCF is improved. The crack is initiated from the impurity particles on the subsurface. Treated at 170 ℃,the area of the quasi-cleavage plane and the width of parallel serrated sections of the crack propagation are the largest. With increasing aging temperature, the dimple size of finally fracture surfaces becomes larger and the depth deeper.展开更多
Tensile tests of solid solution treated 7050 aluminum alloy were conducted to different strain degrees (0.1, 0.4, 0.6 and failure) at 460 ℃ with the strain rate of 1.0×10-4-1.0×10-1s-1. The boundary misorie...Tensile tests of solid solution treated 7050 aluminum alloy were conducted to different strain degrees (0.1, 0.4, 0.6 and failure) at 460 ℃ with the strain rate of 1.0×10-4-1.0×10-1s-1. The boundary misorientation angle evolution during hot deformation of the 7050 aluminum alloy was studied by EBSD technique and the fracture surfaces were observed using SEM. A linear relationship between the increase in the average boundary misorientation angle and the true strain at different strain rates is assumed when aluminum alloy is deformed at 460 ℃. The increasing rate of average boundary misorientation angle is 15.1-, 15.7- and -0.75- corresponding to the strain rate of 1.0×10-4, 1.0×10-2 and 0.1 s-1, respectively. The main softening mechanism is continuous dynamic recrystallization when the strain rates are 1.0×10-4 and 1.0×10-2 s-1, and it is dynamic recovery when strain rate is 0.1 s-1.展开更多
The process of friction-stir welding 2A12CZ alloy has been studied. And strength and elongation tests have been performed, which demonstrated that the opportunity existed to manipulate friction-stir welding parameters...The process of friction-stir welding 2A12CZ alloy has been studied. And strength and elongation tests have been performed, which demonstrated that the opportunity existed to manipulate friction-stir welding parameters in order to improve a range of material properties. The results showed that the joint strength and elongation arrived at their maximums (331 MPa and 4%) at 37.5 mm/min and 300 rpm. As welding parameters changing, joint tensile strength and elongation had similar development. Hardness measurement indicated that the weld was softened. However, there was considerable difference in softening degree for different joint zone. The weld top had lower hardness and wider softening zone than other zone of the weld. And softening zone at advancing side was wider than that at retreating side.展开更多
A nanostructured surface layer was fabricated on 1420 aluminum alloy by high-energy shot peening.Microstructures were characterized by X-ray diffractometer (XRD), transmission electron microscope (TEM) and high-resolu...A nanostructured surface layer was fabricated on 1420 aluminum alloy by high-energy shot peening.Microstructures were characterized by X-ray diffractometer (XRD), transmission electron microscope (TEM) and high-resolution electron microscope(HRTEM), and microhardness measurement was conducted along the depth from top surface layer to matrix of the sample peened for 30 min. The results show that a nanocrystalline layer about 20 μm in thickness is formed on the surface of the sample after high-energy shot peening, in which the grain size is changed from about 20 nm to 100 nm. In the surface layer of 20 -50 μm in depth, the microstructure consists of submicron grains. The surface nanocrystallization is accomplished by dislocation slip. The microhardness of the top surface nanostructured layer is enhanced obviously after high-energy shot peening(HESP) compared with that of the coarse-grained matrix.展开更多
The experimental results and numerical modeling of penetration process of fluoropolymer projectiles in aluminum-based targets are presented. Analysis of mathematical models for interaction of elastoplastic projectile ...The experimental results and numerical modeling of penetration process of fluoropolymer projectiles in aluminum-based targets are presented. Analysis of mathematical models for interaction of elastoplastic projectile and target without taking additional energy released during interaction of fluoropolymer and aluminum into consideration is carried out. Energy fraction which is spent effectively on the increase in cavity volume is determined. The experimental and calculated results of penetration by combined and inert projectiles are compared.展开更多
文摘In order to understand the stress corrosion behavior of super-high strength aluminum alloys by spray forming, different aluminum alloys by different heat treatment was made. The results showed that the alloy with peak aging has the most sensitive stress corrosion cracking, the crack can even be seen using eyes;the alloys with two step aging were better than one step aging alloys, the alloys has not been found stress corrosion cracking.
文摘A high Fe containing aluminum matrix filler metal for hardfacing aluminum silicon alloys has been developed by using iron,nickel,and silicon as the major strengthening elements,and by measuring mechanical properties,room temperature and high temperature wear tests,and microstructural analysis.The filler metal,which contains 3.0%-5.0% Fe and 11.0%-13.0% Si,exhibits an excellent weldability.The as cast and as welded microstructures for the filler metal are of uniformly distribution and its dispersed network of hard phase is enriched with Al Si Fe Ni.The filler metal shows high mechanical properties and wear resistance at both room temperature and high temperatures.The deposited metal has a better resistance to impact wear at 220℃ than that of substrate Al Si Mg Cu piston alloy;at room temperature,the deposited metal has an equivalent resistance to slide wear with lubrication as that of a hyper eutectic aluminum silicon alloy with 27% Si and 1% Ni.
文摘An inductively coupled plasma (ICP) discharge and its etching behaviors for aluminum alloys were investigated in this report. A radio frequency power supply was used for plasma generation. The unique hardware configuration enabled one to control ion energy separately from plasma density. Plasma properties were measured with a Langmuir probe. Electron temperature, plasma potential and plasma density were found to be comparable with those reported from Electron Cyclotron Resonance (ECR) and other types of reactors[1].A mixture of HBr and chlorine gases were used for this aluminum etch study. Experimental matrices were designed with Response Surface Methodology (RSM) to analyze the process trends versus etch parameters, such as source power, bias power and gas composition. An etch rate of 8500A to 9000A per minute was obtained at 5 to 15 mTorr pressure ranges. Anisotropic profiles with high photoresist selectivity (5 to 1) and silicon dioxide selectivity greater than 10 were achieved with HBr addition into chlorine plasma.Bromine-containing chemistry for an aluminum etch in a low pressure ICP discharge showed great potential for use in ULSI fabrication. In addition, the hardware used was very simple and the chamber size was much smaller than other high density plasma sources.
基金Project(BK2012715)supported by the Basic Research Program(Natural Science Foundation)of Jiangsu Province,ChinaProject(14KJA430002)supported by the Key University Science Research Project of Jiangsu Province,China+3 种基金Project(50971087)supported by the National Natural Science Foundation of China,ChinaProjects(11JDG070,11JDG140)supported by the Senior Talent Research Foundation of Jiangsu University,ChinaProject(hsm1301)supported by the Foundation of the Jiangsu Province Key Laboratory of High-end Structural Materials,ChinaProject(Kjsmcx2011004)supported by the Foundation of the Jiangsu Province Key Laboratory of Materials Tribology,China
文摘Microstructure evolution and dislocation configurations in nanostructured Al–Mg alloys processed by high pressure torsion (HPT) were analyzed by transmission electron microscopy (TEM) and high-resolution TEM (HRTEM). The results show that the grains less than 100 nm have sharp grain boundaries (GBs) and are completely free of dislocations. In contrast, a high density of dislocation as high as 1017 m^-2 exists within the grains larger than 200 nm and these larger grains are usually separated into subgrains and dislocation cells. The dislocations are 60° full dislocations with Burgers vectors of 1/2〈110〉and most of them appear as dipoles and loops. The microtwins and stacking faults (SFs) formed by the Shockley partials from the dissociation of both the 60° mixed dislocation and 0° screw dislocation in ultrafine grains were simultaneously observed by HRTEM in the HPT Al–Mg alloys. These results suggest that partial dislocation emissions, as well as the activation of partial dislocations could also become a deformation mechanism in ultrafine-grained aluminum during severe plastic deformation. The grain refinement mechanism associated with the very high local dislocation density, the dislocation cells and the non-equilibrium GBs, as well as the SFs and microtwins in the HPT Al-Mg alloys were proposed.
文摘Flexibility of the CSIR-RCS, induction stirring with simultaneous air cooling process, in combination with high pressure die casting is successfully demonstrated by semi-solid rheocasting of plates performed on commercial 2024, 6082 and 7075 wrought aluminum alloys. Tensile properties were measured for the above mentioned rheocast wrought aluminum alloys in the T6 condition. The results showed that tensile properties were close to or even in some cases exceeded the minimum specifications. The yield strength and elongation of rheocast 2024-T6 exceeded the minimum requirements of the wrought alloy in the T6 condition but the ultimate tensile strength achieved only 90% of the specification because the Mg content of the starting alloy was below the commercial alloy specification. The strengths of rheocast 6082-T6 exceeded all of the wrought alloy T6 strength targets but the elongation only managed 36% of the required minimum due to porosity, caused by incipient melting during solution heat treatment, and the presence of fine intermetallie needles in the eutectic. The yield strength of rheocast 7075 exceeded the required one and the ultimate tensile strength also managed 97% of the specification; while the elongation only reached 46% of the minimum requirement also due to incipient melting porosity caused during the solution heat treatment process.
基金Project(2007AA03Z557) supported by the National High-tech Research and Development Program of ChinaProject(50775086) supported by the National Natural Science Foundation of China
文摘The morphology changes of both Fe-containing intermetallic compounds and the primary Si phase of Al-20Si-2Fe- 2Cu-0.4Mg-1.0Ni-0.5Mn (mass fraction, %) alloy produced by semi-solid rheo-diecasting were studied. The semi-solid slurry of high silicon aluminum alloy was prepared by direct ultrasonic vibration (DUV) which was imposed on the alloy near the liquidus temperature for about 2 rain. Then, standard test samples of 6.4 mm in diameter were formed by semi-solid rheo-diecasting. The results show that the DUV treatment suppresses the formation of needle-like ,β-Al5(Fe,Mn)Si phase, and the Fe-containing intermetallic compounds exist in the form of fine Al4(Fe, Mn)Si2 particles. Additionally, the primary Si grows up as fine and round particles with uniform distribution in α(Al) matrix of this alloy under DUV treatment. The tensile strengths of the samples at the room temperature and 573 K are 230 MPa and 145 MPa, respectively. The coefficient of thermal expansion (CTE) between 25 ℃ and 300 ℃ is 16.052 8×10^-6 ℃^-1, and the wear rate is 1.55%. The hardness of this alloy with 2% Fe reaches HB146.3. It is discovered that modified morphology and uniform distribution of the Fe-containing intermetallic compounds and the primary Si phase are the main reasons for reducing the CTE and increasing the wear resistance of this alloy.
基金supported by Science and Technology Programs of Inner Mongolia(2020GG0301).
文摘The effect of fiber laser on MIG arc was investigated with 8 mm 7075-T6 high strength aluminum alloy as base material.The arc shape,droplet transfer form and electrical signal in the process of MIG welding and laser-MIG hybrid welding were analyzed.The stability of the hybrid welding process was evaluated by standard deviation analysis.The results show that with the increase of laser power,a large number of laser-induced plasma enters the arc column area,providing more conductive channels,which makes the heat of MIG arc more concentrated and the short circuit transition disappear.Due to the continuous effect of laser,the keyhole becomes a continuous electron emission source,and a stable cathode spot will be formed near the keyhole,which enhances the stability of MIG arc at the base current state.By using the method of standard deviation analysis,the voltage standard deviation of single MIG welding arc and laser-MIG hybrid arc within 4 seconds was calculated.The standard deviation of single MIG arc voltage was 1.05,and the standard deviation of MIG arc voltage in laser-MIG hybrid welding was 0.71–0.86,so the hybrid welding process was more stable.
文摘Numerical analysis is critically important to understanding the complex deformation mechanics that occur during sheet forming processes.It has been widely used in simulation of sheet metal forming processes at room temperature in the automotive industry.However,material at elevated temperature behaves more differently than at room temperature and specific material parameters and models need to be developed for the simulation of warm forming.Based on the experimental investigation of material behavior of high strength aluminum alloy 7075(AA7075),constitutive equations with strain rate sensitivity at 140,180 and 220 ℃ are developed.Anisotropic yield criterion Barlat 89 is used in the simulation.Warm forming of limit dome height tests and limit drawing ratio tests of AA7075 at 140,180 and 220℃are performed.Forming limit diagrams developed from experiment at several elevated temperatures in the previous study are used to predict the failure in the simulation results.Punch force and displacement predicted from simulation are compared with the experimental data.Simulation results agree with experimental results,so the developed material model can be used to accurately predict material behavior during isothermal warm forming of the AA7075-T6 alloy.
文摘Dissimilar material joining of 6008 aluminum alloy to H220 YD galvanized high strength steel was performed by resistance spot welding with especial electrodes that were a flat tip electrode against the steel surface and a domed tip electrode upon the aluminum alloy surface. An intermetallic compound layer composed of Fe2Al5 and FeAl3 was formed at the steel/ aluminum interface in the welded joint. The thickness of the intermetallic compound layer increased with increasing welding current and welding time, and the maximum thickness being 7. 0 μm was obtained at 25 kA and 300 ms. The weld nugget diameter and tensile shear load of the welded joint had increased tendencies first with increasing welding current ( 18 -22 kA) and welding time ( 50 - 300 ms), then changed little with further increasing welding current ( 22 - 25 kA) and welding time (300 -400 ms). The maximum tensile shear load reached 5.4 kN at 22 kA and 300 ms. The welded joint fractured through brittle intermetallic compound layer and aluminum alloy nugget.
基金Project(50971087) supported by the National Natural Science Foundation of ChinaProject supported by the Research Council of Norway under the Strategic University Program on Light Metals Technology Projects(67692, 71594) supported by the Hungarian National Science Foundation
文摘Deformation twins and stacking faults were observed in nanostructure A1-Mg alloys subjected to high pressure torsion. These observations are surprising because deformation twinnings have never been observed in their coarse-grained counterparts under normal conditions. Experimental evidences are introduced on non-equilibrium grain boundaries, deformation twinnings and partial dislocation emissions from grain boundaries. Some of these features can be explained by the results reported from molecular-dynamics simulations of pure FCC metals. Special emphasis is laid on the recent observations of high density hexagonal and rhombic shaped nanostructures with an average size of 3 nm in the A1-Mg alloys processed by high pressure torsion. A possible formation process of these nanostructures is proposed based on molecular-dynamics simulations.
基金This project is supported by National Hi-tech Research and Development Program of China(863 Program,No.2002AA305402).
文摘20 mm thick plates of 2519-T87 high strength aluminum alloy have been welded.The effects of the compositions of filler wires,the heat input and the compositions of shielding gas on the mechanical properties and microstructure of the welded joint have been investigated.The results indicate that finer microstructure,better mechanical properties and higher value of hardness of HAZ can be obtained by using lower heat input.The use of Ar/He mixed shielding gas has several advantages over pure Ar shielding gas.With the increase of the proportion of He in the mixed shielding gas, the grain size of the weld metal as well as porosity susceptibility decreases.When the volume ratio of He to Ar reaches 7:3,the porosity and the grain size of weld metal reach the minimum,and the porosity can be further reduced by filling some CO2.
文摘This article mainly discussed bulk material lHvl^ared by powder metallurgy, and the commercial 2024 aluminum alloy powder and FeNiCrCoA13 high entropy alloy powder (both produced by argon gas atomization process) were ball-milled for different hours. The prepared powder was consolidated by hot extrusion method. The microstruetures of the milled powder and bulk alloy were examined by X - Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The thermal stability was tested by differential scanning calorimetry (DSC). Mechanical properties of the extruded alloy were examined by Vickers hardness tester and mechanical testing machine. The results show that after milling, the mixed particle sizes and microstructures of the alloy powder change obviously. The compressive strength of the extruded alloy has reached 580 MPa under certain conditions of milling time and composition.
基金Funded by the National Defense Basic Research Program(No.A2620110005)the Equipment Pre Research Project of Eleventh Five-Year Plan of China(No.40401050301)the Natural Science Foundation of Jiangsu Province(No.BK20131261)
文摘Nickel-coated 45 steel studs and 6061 aluminum alloy with 4047 A1 alloy foil as filler metal were joined by using high frequency induction brazing. The microstrueture of Fe/A1 brazed joint was studied by means of optical microscopy (OM), scanning electron microscope (SEM), energy dispersive X-ray (EDX), and X-ray diffraction (XRD). Results showed that 45 steel stud and 6061 aluminum alloy could be successfully joined by high frequency induction brazing with proper processing parameters. The bonding strength of the joint was of the order of 88 MPa. Ni coating on steel stud successfully avoided the generation of Fe-AI intermetallic compound which is brittle by blocking the contact between A1 and Fe. Intermetallic compounds, i e, AI3Ni2, AlmNi0.9 and A10.3Fe3Si0.7 presented in AI side, FeNi and Fe-A1-Ni ternary eutectic structure were formed in Fe side. The micro-hardness in intermetallic compound layer was 313 HV. The joint was brittle fractured in the intermetallic compounds layer of A1 side, where plenty of A13Ni2 intermetallie compounds were distributed continuously.
基金This work was supported by the National Natural Science Foundation of China ( Grant No. 50305035 ).
文摘To avoid the angular deformation of aluminum alloy T-joint weldments, a new method named welding with auxiliary heat source is proposed. The welding simulation is performed with the commercial finite element software Abaqus and FORTRAN programme encoding a special conical heat source with Gaussian volumetric distribution of flux. The influence of the local model on the temperature, residual stress, and welding deformation distributions is investigated. The findings show that angular deformation achieved through numerical computation completely consists with the experimental result which has proved the effectiveness of the finite element methods developed. Various measurements performed on small-scale welded test specimens provide a data base of experimental results that serves as a bench mark for qualification of the simulation result. Finally, the residual stress and strain states in a T-joint are predicted.
基金Project(2001AA332030) supported by the National High-Tech Research and Development Program of China
文摘Based on the investigation of the tensile properties of spray formed ultra-high strength Al10.8Zn2.9Mg1.9Cu alloys, the high-cycle fatigue properties under different theoretical stress concentration factors were investigated, the fatigue fracture surfaces and microstructures were observed, and the fatigue mechanism was discussed. The results indicate that the ultimate tensile strength of spray formed Al10.8Zn2.9Mg1.9Cu alloys can reach up to 730?740 MPa, and the elongation is about 8%?10% under the condition of two-stage aging treatment. For the stress ratio is 0.1, the maximum stress for 107 cycles is over 400 MPa and 120 MPa, when the theoretical stress concentration factor is 1 and 3, respectively.
基金Funded by the National Natural Science Foundation of China(Nos.51375500,and 51375162)Scientific Research Project of Hunan Province Department of Education(No.17C0886)Open Funded Projects of Hunan Provincial Key Laboratory of Health Maintenance for Mechanical Equipment(No.201605)
文摘The hardness, the tensile and the high-cycle fatigue(HCF) performances of 7075 aluminum alloy were investigated under temper T651, solution treated at 380 ℃ for 0.5 h and aged at different temperatures(150, 170, 190 ℃) for 10 hours. The optimal microstructures and the fatigue fracture surfaces were observed. The results show that the hardness and the tensile performances are at their optimum at T651, but the fatigue life is the shortest. The hardness and the elongation are the lowest after solution treatment. With the aging temperature increasing(150-190 ℃), the HCF is improved. The crack is initiated from the impurity particles on the subsurface. Treated at 170 ℃,the area of the quasi-cleavage plane and the width of parallel serrated sections of the crack propagation are the largest. With increasing aging temperature, the dimple size of finally fracture surfaces becomes larger and the depth deeper.
文摘Tensile tests of solid solution treated 7050 aluminum alloy were conducted to different strain degrees (0.1, 0.4, 0.6 and failure) at 460 ℃ with the strain rate of 1.0×10-4-1.0×10-1s-1. The boundary misorientation angle evolution during hot deformation of the 7050 aluminum alloy was studied by EBSD technique and the fracture surfaces were observed using SEM. A linear relationship between the increase in the average boundary misorientation angle and the true strain at different strain rates is assumed when aluminum alloy is deformed at 460 ℃. The increasing rate of average boundary misorientation angle is 15.1-, 15.7- and -0.75- corresponding to the strain rate of 1.0×10-4, 1.0×10-2 and 0.1 s-1, respectively. The main softening mechanism is continuous dynamic recrystallization when the strain rates are 1.0×10-4 and 1.0×10-2 s-1, and it is dynamic recovery when strain rate is 0.1 s-1.
文摘The process of friction-stir welding 2A12CZ alloy has been studied. And strength and elongation tests have been performed, which demonstrated that the opportunity existed to manipulate friction-stir welding parameters in order to improve a range of material properties. The results showed that the joint strength and elongation arrived at their maximums (331 MPa and 4%) at 37.5 mm/min and 300 rpm. As welding parameters changing, joint tensile strength and elongation had similar development. Hardness measurement indicated that the weld was softened. However, there was considerable difference in softening degree for different joint zone. The weld top had lower hardness and wider softening zone than other zone of the weld. And softening zone at advancing side was wider than that at retreating side.
文摘A nanostructured surface layer was fabricated on 1420 aluminum alloy by high-energy shot peening.Microstructures were characterized by X-ray diffractometer (XRD), transmission electron microscope (TEM) and high-resolution electron microscope(HRTEM), and microhardness measurement was conducted along the depth from top surface layer to matrix of the sample peened for 30 min. The results show that a nanocrystalline layer about 20 μm in thickness is formed on the surface of the sample after high-energy shot peening, in which the grain size is changed from about 20 nm to 100 nm. In the surface layer of 20 -50 μm in depth, the microstructure consists of submicron grains. The surface nanocrystallization is accomplished by dislocation slip. The microhardness of the top surface nanostructured layer is enhanced obviously after high-energy shot peening(HESP) compared with that of the coarse-grained matrix.
文摘The experimental results and numerical modeling of penetration process of fluoropolymer projectiles in aluminum-based targets are presented. Analysis of mathematical models for interaction of elastoplastic projectile and target without taking additional energy released during interaction of fluoropolymer and aluminum into consideration is carried out. Energy fraction which is spent effectively on the increase in cavity volume is determined. The experimental and calculated results of penetration by combined and inert projectiles are compared.