Digital data of precursors is noted for its high accuracy. Therefore, it is important to extract the high frequency information from the low ones in the digital data of precursors and to discriminate between the trend...Digital data of precursors is noted for its high accuracy. Therefore, it is important to extract the high frequency information from the low ones in the digital data of precursors and to discriminate between the trend anomalies and the short-term anomalies. This paper presents a method to separate the high frequency information from the low ones by using the wavelet transform to analyze the digital data of precursors, and illustrates with examples the train of thoughts of discriminating the short-term anomalies from trend anomalies by using the wavelet transform, thus provide a new effective approach for extracting the short-term and trend anomalies from the digital data of precursors.展开更多
文摘Digital data of precursors is noted for its high accuracy. Therefore, it is important to extract the high frequency information from the low ones in the digital data of precursors and to discriminate between the trend anomalies and the short-term anomalies. This paper presents a method to separate the high frequency information from the low ones by using the wavelet transform to analyze the digital data of precursors, and illustrates with examples the train of thoughts of discriminating the short-term anomalies from trend anomalies by using the wavelet transform, thus provide a new effective approach for extracting the short-term and trend anomalies from the digital data of precursors.