[Objective] The research aimed to provide the certain theory basis for the accurate forecast and early warning of high and low temperature in the east of Hexi Corridor.[Method] Based on the high(the daily highest temp...[Objective] The research aimed to provide the certain theory basis for the accurate forecast and early warning of high and low temperature in the east of Hexi Corridor.[Method] Based on the high(the daily highest temperature ≥35 ℃) and low(the daily lowest temperature ≤-20 ℃) temperature data in five observatories in the east of Hexi Corridor during 1960-2009,the temporal and spatial distribution,intensity,continuity and circulation situation of high and low temperature were analyzed in detail by using the statistical method.[Result] The high temperature weather in the east of Hexi Corridor mainly happened in the edge of northeast desert,and the low temperature mainly happened in the mountain zone where the altitude was higher and the edge of north desert.As the climate became warm,the high temperature days showed the weak increase trend,and the intensity strengthened.The low temperature days showed the obvious decrease trend,and the intensity weakened.The high temperature weather mainly occurred in June,August,and the low temperature mainly occurred in January,February,December.The high and low temperature weather had the durative characteristic.The strong high and low temperature mainly occurred in the durative time of high and low temperature.The high temperature weather appeared in the zone where was controlled and affected by the subtropical high.The low temperature weather appeared in the zone where the strong cold air accumulated and invaded.[Conclusion] The research had the extremely important significance on servicing for the agriculture,preventing and reducing the natural disasters,promoting the local economic development.展开更多
In China, meteorological forecasting relies on meteorological data obtained from regional and national stations. However, there were discrepancies between the data collected from the meteorological station at the pass...In China, meteorological forecasting relies on meteorological data obtained from regional and national stations. However, there were discrepancies between the data collected from the meteorological station at the passion fruit growing base and the data from regional and national stations. Consequently, the high and low temperature disaster indicators determined by the meteorological station at the passion fruit growing base cannot be applied to meteorological forecasting. To address this issue and facilitate the monitoring and early warning of high and low temperature disasters in passion fruit cultivation in Fujian, China, we used multi-source hourly temperature data (including the data from meteorological observation stations in passion fruit growing bases, the nearest regional stations, and national surface conventional meteorological observation stations) in three cities in southwestern Fujian (Longyan, Sanming, and Zhangzhou) spanning the years 2020 to 2022. By employing comprehensive statistical analysis methods (0.5 interval division and Cumulative frequency), we identified that passion fruit in southwestern Fujian was susceptible to high temperature disasters during the blooming-fruiting period, as well as low temperature disasters during the sprouting period. Consequently, we developed high and low temperature disaster indicators based on data from regional and national stations for different phenological periods of passion fruit in this region.展开更多
Microstructure observations and drop-weight tear test were performed to study the microstructures and mechanical properties of two kinds of industrial X70 and two kinds of industrial X80 grade pipeline steels. The eff...Microstructure observations and drop-weight tear test were performed to study the microstructures and mechanical properties of two kinds of industrial X70 and two kinds of industrial X80 grade pipeline steels. The effective grain size and the fraction of high angle grain boundaries in the pipeline steels were investigated by electron backscatter diffraction analysis. It is found that the low temperature toughness of the pipeline steels depends not only on the effective grain size, but also on other microstructural factors such as martensite-austenite (MA) constituents and precipitates. The morphology and size of MA constituents significantly affect the mechanical properties of the pipeline steels. Nubby MA constituents with large size have significant negative effects on the toughness, while smaller granular MA constituents have less harmful effects. Similarly, larger Ti-rich nitrides with sharp corners have a strongly negative effect on the toughness, while fine, spherical Nb-rich carbides have a less deleterious effect. The low temperature toughness of the steels is independent of the fraction of high angle grain boundaries.展开更多
A suitable carburized microstructure with fine granular dispersed carbides in hypereutectoid zone,ultra fine martensite in matrix and recrystallized austenite to be refined to the grain size of 12~14 has been obtaine...A suitable carburized microstructure with fine granular dispersed carbides in hypereutectoid zone,ultra fine martensite in matrix and recrystallized austenite to be refined to the grain size of 12~14 has been obtained by a new process,which is a high carbon concentration carburizing with rare earth element at low temperature(860~880℃)in a discontinuous gas carburization furnace.There was not much difference for the microstructure in eutectic zone between this and conventional process.Forming mechanism of granular carbides has been also studied in this paper.展开更多
In this work, a parametric approach is presented and utilized to determine the creep properties of weldments; then the model of creep strain for cross weld specimen is given. On the basis of the experimental results, ...In this work, a parametric approach is presented and utilized to determine the creep properties of weldments; then the model of creep strain for cross weld specimen is given. On the basis of the experimental results, attempt has been made to establish equations of the isochronous stress-strain for weld joint that can predict the function of loading and service time in use of the creep data of base metal and weld metal.展开更多
Piezoelectric ceramics of 0.6(Bi0.9La0.1)FeO3-0.4Pb(Ti1-xMnx)O3 (BLF-PTM) for x=0, 0.01, 0.02, and 0.03 were prepared by sol-gel process combined with a solid-state reaction method. The tan? for BLF-PTM of x=0.01 is j...Piezoelectric ceramics of 0.6(Bi0.9La0.1)FeO3-0.4Pb(Ti1-xMnx)O3 (BLF-PTM) for x=0, 0.01, 0.02, and 0.03 were prepared by sol-gel process combined with a solid-state reaction method. The tan? for BLF-PTM of x=0.01 is just 0.006 at 1 kHz, drastically decreasing by using Mn dopants. The TC increases to 490 ℃ for BLF-PTM of x=0.02. Furthermore, Mn modification effectively enhances the poling state and the piezoelectric properties of BLF-PTM. The kp, Qm, d33, and g33 of 0.34, 403, and 124 pC1·N-1 and 37×10-3 Vm·N-1 are achieved for BLF-PTM of x=0.01. The results indicate that Mn modified BLF-PTM is a competitive high power and high temperature piezoelectric material with excellent piezoelectric properties.展开更多
High resistance thin film chip resistors(0603 type) were studied,and the specifications are as follows:1 k? with tolerance about ±0.1% after laser trimming and temperature coefficient of resistance(TCR) less than...High resistance thin film chip resistors(0603 type) were studied,and the specifications are as follows:1 k? with tolerance about ±0.1% after laser trimming and temperature coefficient of resistance(TCR) less than ±15×10-6/℃.Cr-Si-Ta-Al films were prepared with Ar flow rate and sputtering power fixed at 20 standard-state cubic centimeter per minute(sccm) and 100 W,respectively.The experiment shows that the electrical properties of Cr-SiTa-Al deposition films can meet the specification requirements of 0603 ty...展开更多
Micro-supercapacitors(MSCs)are considered as highly competitive power sources for miniaturized electronics.However,narrow voltage window and poor anti-freezing properties of MSCs in conventional aqueous electrolytes l...Micro-supercapacitors(MSCs)are considered as highly competitive power sources for miniaturized electronics.However,narrow voltage window and poor anti-freezing properties of MSCs in conventional aqueous electrolytes lead to low energy density and limited environmental adaption.Herein,we report the construction of low-temperature and high-energy-density MSCs based on anti-freezing hybrid gel electrolytes(HGE)through introducing ethylene glycol(EG)additives into aqueous LiCl electrolyte.Since EG partially destroys hydrogen bond network among water molecules,the HGE exhibits maximum electrochemical stability window of 2.7 V and superior anti-freezing features with a glass transition temperature of-62.8℃.Further,the optimized MSCs using activated carbon microelectrodes possess impressive volumetric capacitance of 28.9 F cm^(-3)and energy density of 10.3 mWh cm^(-3)in the voltage of 1.6 V,2.6 times higher than MSCs tested in 1.2 V.Importantly,the MSCs display 68.3%capacitance retention even at-30℃ compared to the value at 25℃,and ultra-long cyclability with 85.7%of initial capacitance after 15,000 times,indicating extraordinary low-temperature performance.Besides,our devices offer favorable flexibility and modular integration.Therefore,this work provides a general strategy of realizing flexible,safe and anti-freezing microscale power sources,holding great potential towards subzero-temperature microelectronic applications.展开更多
A series of oxygen-doped RE_2CuO_4 (RE=Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm) was synthesized using high-pressure/oxygen-doped technique. The structures and low temperature magnetic properties were investigated. The XRD ...A series of oxygen-doped RE_2CuO_4 (RE=Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm) was synthesized using high-pressure/oxygen-doped technique. The structures and low temperature magnetic properties were investigated. The XRD patterns indicate that the structures of high oxygen pressure RE_2CuO_4 (only for RE=Sm, Eu) samples are pure T′ phase, but when RE= Gd, Tb, Dy, Ho, Er, Tm, the structures turn to disorder. The magnetic anomalies that occurred at T^30 K are observed in high oxygen pressure RE_2CuO_4. It is found that the transition temperatures of weak ferromagnetic anomalies are nearly independent of the rare-earth components. Thus, the O-doping plays an important role in anomalous magnetic properties of RE_2CuO_(4+δ). The magnetic anomalies in RE_2CuO_4 are considered to be due to ferromagnetic clusters formed in the Cu-O plane after the oxygen doping.展开更多
We briefly introduce a new high-pressure transport measurement system integrated with low temperature and magnetic field that is being established as one of the user experimental stations of the Synergetic Extreme Con...We briefly introduce a new high-pressure transport measurement system integrated with low temperature and magnetic field that is being established as one of the user experimental stations of the Synergetic Extreme Condition User Facilities in the Huairou District of Beijing, China. To demonstrate the capabilities of the system for condensed matter research, the emergence of some pressure-induced phenomena and physics related to superconductivity found previously is also introduced, and then a perspective for such an advanced high-pressure system is presented.展开更多
The effect of rare earth(RE) on low frequency high temperature fatigue strength of hot rolled steel 60CrMnMo was investigated. The results show that by adding a certain amount of RE in steel 60CrMnMo, its serviceable ...The effect of rare earth(RE) on low frequency high temperature fatigue strength of hot rolled steel 60CrMnMo was investigated. The results show that by adding a certain amount of RE in steel 60CrMnMo, its serviceable life during low frequency fatigue test at high temperature can be improved.The number of cycles for fracture was increased by 18.5%~28.8%. The number of large inclusion particleswas reduced and the composition of inclusions and their shape were changed as well. The strip distances on fatigue fracture surface were decreased. It is concluded that the optimum amount of RE addtion is about 0.05 wt%~0. 10 wt%.展开更多
Low excitation voltage for an electromagnetic acoustic transducer(EMAT)is necessary for the petrochemical equipment and facilities inspection,which work at high-temperatures,to avoid potential explosion.However,low ex...Low excitation voltage for an electromagnetic acoustic transducer(EMAT)is necessary for the petrochemical equipment and facilities inspection,which work at high-temperatures,to avoid potential explosion.However,low excitation voltage causes low signal-to-noise ratio(SNR)signals that are difficult to extract features,especially in a high-temperature environment,which causes high noise.In this study,a denoising method called the variational wavelet ensemble empirical(VWEE)method was proposed by combining the advantages of the variational modal decomposition(VMD),wavelet threshold(WT)denoising,and ensemble empirical mode decomposition(EEMD)methods.To validate the VWEE method,EMAT signals obtained in the temperature range of 25 to 700°C were analyzed.The results show that,compared with VMD,WT and empirical mode decomposition denoising methods,the SNR of proposed method is improved more than two times.The VWEE method dramatically improved the SNR of a high-temperature EMAT signal and enhanced the accuracy of defect echos extraction.展开更多
The electrical properties of polycrystaltine CaB6 are revealed by in-situ resistance measurements under high pressure and low temperature. Due to the existence of grain boundaries, polycrystalline CaB6 behaves with se...The electrical properties of polycrystaltine CaB6 are revealed by in-situ resistance measurements under high pressure and low temperature. Due to the existence of grain boundaries, polycrystalline CaB6 behaves with semiconducting transport properties, which is different from the semimetallic CaB6 single crystals. The temperaturedependent resistance measurement results show that before the structural phase transition at 12.3 GPa the high pressure first induces the metallization at 6.5 GPa for CAB6. Moreover, the phase diagram for CaB6 is drawn based on the investigated electric conducting properties and at least three different conducting phases are found even at moderate high pressure and low temperature, indicating that the electric nature of CaB6 is very sensitive to the environment.展开更多
High salt and low temperature are the bottlenecks for the remove of oil contaminants by enriched crude-oil degrading microbiota in Liaohe Estuarine Wetland(LEW),China.To improve the performance of crude-oil removal,mi...High salt and low temperature are the bottlenecks for the remove of oil contaminants by enriched crude-oil degrading microbiota in Liaohe Estuarine Wetland(LEW),China.To improve the performance of crude-oil removal,microbiota was further immobilized by two methods,i.e.,sodium alginate(SA),and polyvinyl alcohol and sodium alginate(PVA+SA).Results showed that the crude oil was effectively removed by the enrichment with an average degrading ratio of 19.42-31.45 mg(L d)^(−1).The optimal inoculum size for the n-alkanes removal was 10%and 99.89%.Some members of genera Acinetobacter,Actinophytocola,Aquabac-terium,Dysgonomonas,Frigidibacter,Sphingobium,Serpens,and Pseudomonas dominated in crude-oil degrading microflora.Though the removal efficiency was lower than free bacteria when the temperature was 15℃,SA and PVA+SA immobilization im-proved the resistance to salinity.The composite crude-oil degrading microbiota in this study demonstrated a perspective potential for crude oil removal from surface water under high salinity and low temperature conditions.展开更多
High strength low alloy steel with 16 mm thickness was welded by using high power laser hybrid welding. Microstrueture was characterized by using optical microscopy, scanning electron microscopy ( SEM ) , transmissi...High strength low alloy steel with 16 mm thickness was welded by using high power laser hybrid welding. Microstrueture was characterized by using optical microscopy, scanning electron microscopy ( SEM ) , transmission electron microscopy (TEM) and selected area electron diffraction (SAED). Low temperature impact toughness was estimated by using Charpy V-notch impact samples selected from the upper part and the lower part at the same heterogeneous joint. Results show that the low temperature impact absorbed energies of weld metal are (202,180,165 J) of upper samples and (178,145,160 J) of lower samples, respectively. All of them increase compared to base metal. The embrittlement of HAZ does not occur. Weld metal primarily consists of refined carbide free bainite and a little granular bainite since laser hybrid welding owns the character of low heat input. Retained austenite constituent film "locates among the lath structure of bainitie ferrite. Refined bainitic ferrite lath and retained austenite constituent film provide better low temperature impact toughness compared to base metal.展开更多
Low-temperature performance and high-rate discharge capability of AB5-type non-stoichiometric hydrogen storage are studied. X-ray diffraction(XRD),pressure-composition-temperature(PCT) curves and electrochemical imped...Low-temperature performance and high-rate discharge capability of AB5-type non-stoichiometric hydrogen storage are studied. X-ray diffraction(XRD),pressure-composition-temperature(PCT) curves and electrochemical impedance spectroscopy(EIS) are applied to characterize the electrochemical properties of ABx(x=4.8,4.9,5.0,5.1,5.2) alloys. The results show that the non-stoichiometric alloys exhibit better electrochemical properties compared with that of the AB5 alloy.展开更多
CsPbI_(2)Br perovskite solar cells have achieved rapid development owing to their exceptional optoelectronic properties and relatively outstanding stability.However,open-circuit voltage(Voc)loss caused by band mismatc...CsPbI_(2)Br perovskite solar cells have achieved rapid development owing to their exceptional optoelectronic properties and relatively outstanding stability.However,open-circuit voltage(Voc)loss caused by band mismatch and charge recombination between perovskite and charge transporting layer is one of the crucial obstacles to further improve the device performance.Here,we proposed a bilayer electron transport layer ZnO(bottom)/SnO_(2)(top)to reduce the Voc loss(Eloss)and promote device Voc by ZnO insert layer thickness modulation,which could improve the efficiency of charge carrier extraction/transfer and suppress the charge carrier recombination.In addition,guanidinium iodide top surface treatment is used to further reduce the trap density,stabilize the perovskite film and align the energy levels,which promotes the fill factor,short-circuit current density(Jsc),and stability of the device.As a result,the champion cell of double-side optimized CsPbI_(2)Br perovskite solar cells exhibits an extraordinary efficiency of 16.25%with the best Voc as high as 1.27 V and excellent thermal and storage stability.展开更多
Recently, " Low Creep Ultra-high Temperature Corundum Mullite Kiln Fumature" developed by Sinosteel L1RR was listed in The National New Product Program in 2012 of The Ministry of Science and Technology of China.
The effect of high density pulse electric current (HDPEC) on the solidification structure of the low temperature melt(LTM) of commercial A356 alloy was investigated. In the experiments, the HDPEC was discharged in the...The effect of high density pulse electric current (HDPEC) on the solidification structure of the low temperature melt(LTM) of commercial A356 alloy was investigated. In the experiments, the HDPEC was discharged in the LTM (953?K, 903?K and 873?K). By the control experiments, the results showed that the solidification structure of the LTM of A356 alloy is refined apparently when the HDPEC is discharged in low temperature melt. However, the holding time of melt treated has an adverse effect on the solidification structure. The longer the holding time of the melt treated with HDPEC, the coarser the microstructure. With the same discharge voltage, the lower the temperature of LTM, the more obscure the refinement of solidification structure. Finally, the mechanism of microstructure refining by HDPEC was analyzed.展开更多
The layer structure of low-carbon steel containing RE by high-temperature (T>1200 ℃) carburizing of liquid cast-iron was studied and the diffusion activation energy of carbon was calculated by metallographic micr...The layer structure of low-carbon steel containing RE by high-temperature (T>1200 ℃) carburizing of liquid cast-iron was studied and the diffusion activation energy of carbon was calculated by metallographic microscpe, chemical analysis etc. The result shows that the technology of carburizing in liquid cast-iron can expedite caburization distinctly and changes the carburizing layer structure. The carburizing rate is 60~80 times of that of the traditional technology, and there is about 43% decrease in the activation energy compared with gas-carburization. In outer structure layer, cementite is formed simultaneously both on the crystal boundary reticularly and inside the crystal grains stripedly. In inner carburizing layer, there is undissolved blocky ferrite in reticular cementite. Besides, rare earth element can expedite carburization process.展开更多
基金Supported by Gansu Province the Fifth Installment "Ten Plan"~~
文摘[Objective] The research aimed to provide the certain theory basis for the accurate forecast and early warning of high and low temperature in the east of Hexi Corridor.[Method] Based on the high(the daily highest temperature ≥35 ℃) and low(the daily lowest temperature ≤-20 ℃) temperature data in five observatories in the east of Hexi Corridor during 1960-2009,the temporal and spatial distribution,intensity,continuity and circulation situation of high and low temperature were analyzed in detail by using the statistical method.[Result] The high temperature weather in the east of Hexi Corridor mainly happened in the edge of northeast desert,and the low temperature mainly happened in the mountain zone where the altitude was higher and the edge of north desert.As the climate became warm,the high temperature days showed the weak increase trend,and the intensity strengthened.The low temperature days showed the obvious decrease trend,and the intensity weakened.The high temperature weather mainly occurred in June,August,and the low temperature mainly occurred in January,February,December.The high and low temperature weather had the durative characteristic.The strong high and low temperature mainly occurred in the durative time of high and low temperature.The high temperature weather appeared in the zone where was controlled and affected by the subtropical high.The low temperature weather appeared in the zone where the strong cold air accumulated and invaded.[Conclusion] The research had the extremely important significance on servicing for the agriculture,preventing and reducing the natural disasters,promoting the local economic development.
文摘In China, meteorological forecasting relies on meteorological data obtained from regional and national stations. However, there were discrepancies between the data collected from the meteorological station at the passion fruit growing base and the data from regional and national stations. Consequently, the high and low temperature disaster indicators determined by the meteorological station at the passion fruit growing base cannot be applied to meteorological forecasting. To address this issue and facilitate the monitoring and early warning of high and low temperature disasters in passion fruit cultivation in Fujian, China, we used multi-source hourly temperature data (including the data from meteorological observation stations in passion fruit growing bases, the nearest regional stations, and national surface conventional meteorological observation stations) in three cities in southwestern Fujian (Longyan, Sanming, and Zhangzhou) spanning the years 2020 to 2022. By employing comprehensive statistical analysis methods (0.5 interval division and Cumulative frequency), we identified that passion fruit in southwestern Fujian was susceptible to high temperature disasters during the blooming-fruiting period, as well as low temperature disasters during the sprouting period. Consequently, we developed high and low temperature disaster indicators based on data from regional and national stations for different phenological periods of passion fruit in this region.
文摘Microstructure observations and drop-weight tear test were performed to study the microstructures and mechanical properties of two kinds of industrial X70 and two kinds of industrial X80 grade pipeline steels. The effective grain size and the fraction of high angle grain boundaries in the pipeline steels were investigated by electron backscatter diffraction analysis. It is found that the low temperature toughness of the pipeline steels depends not only on the effective grain size, but also on other microstructural factors such as martensite-austenite (MA) constituents and precipitates. The morphology and size of MA constituents significantly affect the mechanical properties of the pipeline steels. Nubby MA constituents with large size have significant negative effects on the toughness, while smaller granular MA constituents have less harmful effects. Similarly, larger Ti-rich nitrides with sharp corners have a strongly negative effect on the toughness, while fine, spherical Nb-rich carbides have a less deleterious effect. The low temperature toughness of the steels is independent of the fraction of high angle grain boundaries.
文摘A suitable carburized microstructure with fine granular dispersed carbides in hypereutectoid zone,ultra fine martensite in matrix and recrystallized austenite to be refined to the grain size of 12~14 has been obtained by a new process,which is a high carbon concentration carburizing with rare earth element at low temperature(860~880℃)in a discontinuous gas carburization furnace.There was not much difference for the microstructure in eutectic zone between this and conventional process.Forming mechanism of granular carbides has been also studied in this paper.
基金supports provided by Natural Science Foundation of Shanghai(contract No.03ZR14022)the“Tenth Five”National Key Technological Research and Development Program(contract No.2001BA803B03)National Natural Science Foundation of China(contract No.50225517)are gratefully acknowledged.
文摘In this work, a parametric approach is presented and utilized to determine the creep properties of weldments; then the model of creep strain for cross weld specimen is given. On the basis of the experimental results, attempt has been made to establish equations of the isochronous stress-strain for weld joint that can predict the function of loading and service time in use of the creep data of base metal and weld metal.
基金financially supported by National Nature Science Foundation of China(No.50872080)Shanghai Special Foundation of Nanotechnology(No.1052nm07300)+2 种基金Shanghai Education Development Foundation(No.08SG41)Shanghai Leading Academic Disciplines(No.S30107)Innovational Foundation of Shanghai University
文摘Piezoelectric ceramics of 0.6(Bi0.9La0.1)FeO3-0.4Pb(Ti1-xMnx)O3 (BLF-PTM) for x=0, 0.01, 0.02, and 0.03 were prepared by sol-gel process combined with a solid-state reaction method. The tan? for BLF-PTM of x=0.01 is just 0.006 at 1 kHz, drastically decreasing by using Mn dopants. The TC increases to 490 ℃ for BLF-PTM of x=0.02. Furthermore, Mn modification effectively enhances the poling state and the piezoelectric properties of BLF-PTM. The kp, Qm, d33, and g33 of 0.34, 403, and 124 pC1·N-1 and 37×10-3 Vm·N-1 are achieved for BLF-PTM of x=0.01. The results indicate that Mn modified BLF-PTM is a competitive high power and high temperature piezoelectric material with excellent piezoelectric properties.
基金Supported by Science and Technology Committee of Tianjin (No.06YFGPGX08400)Ministry of Science and Technology of China (No.2009GJF20022)Innovation Fund of Tianjin University
文摘High resistance thin film chip resistors(0603 type) were studied,and the specifications are as follows:1 k? with tolerance about ±0.1% after laser trimming and temperature coefficient of resistance(TCR) less than ±15×10-6/℃.Cr-Si-Ta-Al films were prepared with Ar flow rate and sputtering power fixed at 20 standard-state cubic centimeter per minute(sccm) and 100 W,respectively.The experiment shows that the electrical properties of Cr-SiTa-Al deposition films can meet the specification requirements of 0603 ty...
基金financially supported by the National Natural Science Foundation of China(22125903,51872283,22109160,22005297)the Dalian Innovation Support Plan for High Level Talents(2019RT09)+6 种基金the The Joint Fund of the Yulin University and the Dalian National Laboratory For Clean Energy(DNL),CAS,DNL Cooperation Fund,CAS(DNL201912,DNL201915,DNL202016,DNL202019),DICP(DICP ZZBS201802,DICP I2020032)The Joint Fund of the Yulin University and the Dalian National Laboratory for Clean Energy(YLU-DNL Fund 2021002,YLU-DNL Fund 2021009)the China Postdoctoral Science Foundation(2021M693126,2020M680995,2021M703145,2021M693127)the International Postdoctoral Exchange Fellowship Program(Talent-Introduction Program)(YJ20210311)the Plan for promoting innovative talents of Education Department of Liaoning Province(LCR2018015)the Shenyang Youth Science and Technology Project(RC200444)the Natural Science Foundation of Liaoning Province(2021-MS-234)。
文摘Micro-supercapacitors(MSCs)are considered as highly competitive power sources for miniaturized electronics.However,narrow voltage window and poor anti-freezing properties of MSCs in conventional aqueous electrolytes lead to low energy density and limited environmental adaption.Herein,we report the construction of low-temperature and high-energy-density MSCs based on anti-freezing hybrid gel electrolytes(HGE)through introducing ethylene glycol(EG)additives into aqueous LiCl electrolyte.Since EG partially destroys hydrogen bond network among water molecules,the HGE exhibits maximum electrochemical stability window of 2.7 V and superior anti-freezing features with a glass transition temperature of-62.8℃.Further,the optimized MSCs using activated carbon microelectrodes possess impressive volumetric capacitance of 28.9 F cm^(-3)and energy density of 10.3 mWh cm^(-3)in the voltage of 1.6 V,2.6 times higher than MSCs tested in 1.2 V.Importantly,the MSCs display 68.3%capacitance retention even at-30℃ compared to the value at 25℃,and ultra-long cyclability with 85.7%of initial capacitance after 15,000 times,indicating extraordinary low-temperature performance.Besides,our devices offer favorable flexibility and modular integration.Therefore,this work provides a general strategy of realizing flexible,safe and anti-freezing microscale power sources,holding great potential towards subzero-temperature microelectronic applications.
文摘A series of oxygen-doped RE_2CuO_4 (RE=Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm) was synthesized using high-pressure/oxygen-doped technique. The structures and low temperature magnetic properties were investigated. The XRD patterns indicate that the structures of high oxygen pressure RE_2CuO_4 (only for RE=Sm, Eu) samples are pure T′ phase, but when RE= Gd, Tb, Dy, Ho, Er, Tm, the structures turn to disorder. The magnetic anomalies that occurred at T^30 K are observed in high oxygen pressure RE_2CuO_4. It is found that the transition temperatures of weak ferromagnetic anomalies are nearly independent of the rare-earth components. Thus, the O-doping plays an important role in anomalous magnetic properties of RE_2CuO_(4+δ). The magnetic anomalies in RE_2CuO_4 are considered to be due to ferromagnetic clusters formed in the Cu-O plane after the oxygen doping.
文摘We briefly introduce a new high-pressure transport measurement system integrated with low temperature and magnetic field that is being established as one of the user experimental stations of the Synergetic Extreme Condition User Facilities in the Huairou District of Beijing, China. To demonstrate the capabilities of the system for condensed matter research, the emergence of some pressure-induced phenomena and physics related to superconductivity found previously is also introduced, and then a perspective for such an advanced high-pressure system is presented.
文摘The effect of rare earth(RE) on low frequency high temperature fatigue strength of hot rolled steel 60CrMnMo was investigated. The results show that by adding a certain amount of RE in steel 60CrMnMo, its serviceable life during low frequency fatigue test at high temperature can be improved.The number of cycles for fracture was increased by 18.5%~28.8%. The number of large inclusion particleswas reduced and the composition of inclusions and their shape were changed as well. The strip distances on fatigue fracture surface were decreased. It is concluded that the optimum amount of RE addtion is about 0.05 wt%~0. 10 wt%.
基金National Natural Science Foundation of China(Grant No.62071433)Shanxi Province Graduate Student Innovation Project(Grant No.2021Y583).
文摘Low excitation voltage for an electromagnetic acoustic transducer(EMAT)is necessary for the petrochemical equipment and facilities inspection,which work at high-temperatures,to avoid potential explosion.However,low excitation voltage causes low signal-to-noise ratio(SNR)signals that are difficult to extract features,especially in a high-temperature environment,which causes high noise.In this study,a denoising method called the variational wavelet ensemble empirical(VWEE)method was proposed by combining the advantages of the variational modal decomposition(VMD),wavelet threshold(WT)denoising,and ensemble empirical mode decomposition(EEMD)methods.To validate the VWEE method,EMAT signals obtained in the temperature range of 25 to 700°C were analyzed.The results show that,compared with VMD,WT and empirical mode decomposition denoising methods,the SNR of proposed method is improved more than two times.The VWEE method dramatically improved the SNR of a high-temperature EMAT signal and enhanced the accuracy of defect echos extraction.
基金Supported by the National Basic Research Program of China under Grant No 2011CB808204the National Natural Science Foundation of China under Grant Nos 11374121 and 11404133
文摘The electrical properties of polycrystaltine CaB6 are revealed by in-situ resistance measurements under high pressure and low temperature. Due to the existence of grain boundaries, polycrystalline CaB6 behaves with semiconducting transport properties, which is different from the semimetallic CaB6 single crystals. The temperaturedependent resistance measurement results show that before the structural phase transition at 12.3 GPa the high pressure first induces the metallization at 6.5 GPa for CAB6. Moreover, the phase diagram for CaB6 is drawn based on the investigated electric conducting properties and at least three different conducting phases are found even at moderate high pressure and low temperature, indicating that the electric nature of CaB6 is very sensitive to the environment.
基金supported by the National Key R&D Program of China(No.2018YFD0900805)the Start up Foundation for Introducing Talent of Nanjing Univer-sity of Information Science and Technology。
文摘High salt and low temperature are the bottlenecks for the remove of oil contaminants by enriched crude-oil degrading microbiota in Liaohe Estuarine Wetland(LEW),China.To improve the performance of crude-oil removal,microbiota was further immobilized by two methods,i.e.,sodium alginate(SA),and polyvinyl alcohol and sodium alginate(PVA+SA).Results showed that the crude oil was effectively removed by the enrichment with an average degrading ratio of 19.42-31.45 mg(L d)^(−1).The optimal inoculum size for the n-alkanes removal was 10%and 99.89%.Some members of genera Acinetobacter,Actinophytocola,Aquabac-terium,Dysgonomonas,Frigidibacter,Sphingobium,Serpens,and Pseudomonas dominated in crude-oil degrading microflora.Though the removal efficiency was lower than free bacteria when the temperature was 15℃,SA and PVA+SA immobilization im-proved the resistance to salinity.The composite crude-oil degrading microbiota in this study demonstrated a perspective potential for crude oil removal from surface water under high salinity and low temperature conditions.
文摘High strength low alloy steel with 16 mm thickness was welded by using high power laser hybrid welding. Microstrueture was characterized by using optical microscopy, scanning electron microscopy ( SEM ) , transmission electron microscopy (TEM) and selected area electron diffraction (SAED). Low temperature impact toughness was estimated by using Charpy V-notch impact samples selected from the upper part and the lower part at the same heterogeneous joint. Results show that the low temperature impact absorbed energies of weld metal are (202,180,165 J) of upper samples and (178,145,160 J) of lower samples, respectively. All of them increase compared to base metal. The embrittlement of HAZ does not occur. Weld metal primarily consists of refined carbide free bainite and a little granular bainite since laser hybrid welding owns the character of low heat input. Retained austenite constituent film "locates among the lath structure of bainitie ferrite. Refined bainitic ferrite lath and retained austenite constituent film provide better low temperature impact toughness compared to base metal.
基金Project(2006AA11A151) supported by the National Hi-Tech Research and Development Program of China
文摘Low-temperature performance and high-rate discharge capability of AB5-type non-stoichiometric hydrogen storage are studied. X-ray diffraction(XRD),pressure-composition-temperature(PCT) curves and electrochemical impedance spectroscopy(EIS) are applied to characterize the electrochemical properties of ABx(x=4.8,4.9,5.0,5.1,5.2) alloys. The results show that the non-stoichiometric alloys exhibit better electrochemical properties compared with that of the AB5 alloy.
基金supported by National Natural Science Foundation of China(61704131 and 61804111)National Key Research and Development Program of China(Grant 2018YFB2202900)+2 种基金Key Research and Development Program of Shaanxi Province(Grant 2020GY-310)the Joint Research Funds of Department of Science&Technology of Shaanxi Province and Northwestern Polytechnical University(2020GXLH-Z-018)the Fundamental Research Funds for the Central Universities and the Innovation Fund of Xidian University.
文摘CsPbI_(2)Br perovskite solar cells have achieved rapid development owing to their exceptional optoelectronic properties and relatively outstanding stability.However,open-circuit voltage(Voc)loss caused by band mismatch and charge recombination between perovskite and charge transporting layer is one of the crucial obstacles to further improve the device performance.Here,we proposed a bilayer electron transport layer ZnO(bottom)/SnO_(2)(top)to reduce the Voc loss(Eloss)and promote device Voc by ZnO insert layer thickness modulation,which could improve the efficiency of charge carrier extraction/transfer and suppress the charge carrier recombination.In addition,guanidinium iodide top surface treatment is used to further reduce the trap density,stabilize the perovskite film and align the energy levels,which promotes the fill factor,short-circuit current density(Jsc),and stability of the device.As a result,the champion cell of double-side optimized CsPbI_(2)Br perovskite solar cells exhibits an extraordinary efficiency of 16.25%with the best Voc as high as 1.27 V and excellent thermal and storage stability.
文摘Recently, " Low Creep Ultra-high Temperature Corundum Mullite Kiln Fumature" developed by Sinosteel L1RR was listed in The National New Product Program in 2012 of The Ministry of Science and Technology of China.
文摘The effect of high density pulse electric current (HDPEC) on the solidification structure of the low temperature melt(LTM) of commercial A356 alloy was investigated. In the experiments, the HDPEC was discharged in the LTM (953?K, 903?K and 873?K). By the control experiments, the results showed that the solidification structure of the LTM of A356 alloy is refined apparently when the HDPEC is discharged in low temperature melt. However, the holding time of melt treated has an adverse effect on the solidification structure. The longer the holding time of the melt treated with HDPEC, the coarser the microstructure. With the same discharge voltage, the lower the temperature of LTM, the more obscure the refinement of solidification structure. Finally, the mechanism of microstructure refining by HDPEC was analyzed.
文摘The layer structure of low-carbon steel containing RE by high-temperature (T>1200 ℃) carburizing of liquid cast-iron was studied and the diffusion activation energy of carbon was calculated by metallographic microscpe, chemical analysis etc. The result shows that the technology of carburizing in liquid cast-iron can expedite caburization distinctly and changes the carburizing layer structure. The carburizing rate is 60~80 times of that of the traditional technology, and there is about 43% decrease in the activation energy compared with gas-carburization. In outer structure layer, cementite is formed simultaneously both on the crystal boundary reticularly and inside the crystal grains stripedly. In inner carburizing layer, there is undissolved blocky ferrite in reticular cementite. Besides, rare earth element can expedite carburization process.