Aqueous zinc-ion batteries are regarded as the promising candidates for large-scale energy storage systems owing to low cost and high safety;however,their applications are restricted by their poor low-temperature perf...Aqueous zinc-ion batteries are regarded as the promising candidates for large-scale energy storage systems owing to low cost and high safety;however,their applications are restricted by their poor low-temperature performance.Herein,a low-temperature electrolyte for low-temperature aqueous zinc-ion batteries is designed by introducing low-polarity diglyme into an aqueous solution of Zn(ClO_(4))_(2).The diglyme disrupts the hydrogenbonding network of water and lowers the freezing point of the electrolyte to-105℃.The designed electrolyte achieves ionic conductivity up to16.18 mS cm^(-1)at-45℃.The diglyme and ClO_(4)^(-)reconfigure the solvated structure of Zn^(2+),which is more favorable for the desolvation of Zn^(2+)at low temperatures.In addition,the diglyme effectively suppresses the dendrites,hydrogen evolution reaction,and by-products of the zinc anode,improving the cycle stability of the battery.At-20℃,a Zn‖Zn symmetrical cell is cycled for 5200 h at 1 mA cm^(-2)and 1 mA h cm^(-2),and a Zn‖polyaniline battery achieves an ultra-long cycle life of 10000 times.This study sheds light on the future design of electrolytes with high ionic conductivity and easy desolvation at low temperatures for rechargeable batteries.展开更多
In the process of food testing,human operation is an important variable affecting the experimental results.In order to reasonably avoid the influence of human subjective operation behavior on the accuracy of detection...In the process of food testing,human operation is an important variable affecting the experimental results.In order to reasonably avoid the influence of human subjective operation behavior on the accuracy of detection results,the laboratory information management system was used as the information platform to design a high-throughput laboratory automation pre-treatment system based on the deep integration of mechanical principles,visual analysis,high-speed conduction,intelligent storage and other technical systems.The experimental results showed that the system could shorten the sample circulation cycle,effectively improve the laboratory biosafety,and meet the requirements of high-throughput processing of samples.展开更多
The mechanical behavior of the test string in deep wells is generally relatively complex as a result of the high temperature and high pressure,severe dogleg and buckling effects,which in some circumstances can even le...The mechanical behavior of the test string in deep wells is generally relatively complex as a result of the high temperature and high pressure,severe dogleg and buckling effects,which in some circumstances can even lead to string failure.Traditional computational methods for the analysis of these behaviors are often inaccurate.For this reason,here a more accurate mechanical model of the test string is introduced by considering variables such as temperature,pressure,wellbore trajectory,and buckling,as well as combining them with the deformation and string constraint conditions brought in by changes in temperature and pressure during the tripping,setting,and test operations.The model is validated by applying it to a specific high-pressure gas well(located in Northeast Sichuan).展开更多
X-band high-gradient linear accelerators are a challenging and attractive technology for compact electron linear-accelerator facilities.The Very Compact Inverse Compton Scattering Gamma-ray Source(VIGAS)program at Tsi...X-band high-gradient linear accelerators are a challenging and attractive technology for compact electron linear-accelerator facilities.The Very Compact Inverse Compton Scattering Gamma-ray Source(VIGAS)program at Tsinghua University will utilize X-band high-gradient accelerating structures to boost the electron beam from 50 to 350 MeV over a short distance.A constant-impedance traveling-wave structure consisting of 72 cells working in the 2π/3 mode was designed and fabricated for this project.Precise tuning and detailed measurements were successfully applied to the structure.After 180 h of conditioning in the Tsinghua high-power test stand,the structure reached a target gradient of 80 MV/m.The breakdown rate versus gradient of this structure was measured and analyzed.展开更多
Water-cooled flat-type W/Cu Cr Zr plasma facing components with an interlayer of oxygen-free copper(OFC) have been developed by using vacuum brazing route.The OFC layer for the accommodation of thermal stresses was ...Water-cooled flat-type W/Cu Cr Zr plasma facing components with an interlayer of oxygen-free copper(OFC) have been developed by using vacuum brazing route.The OFC layer for the accommodation of thermal stresses was cast onto the surface of W at a temperature range of 1150oC-1200 oC in a vacuum furnace.The W/OFC cast tiles were vacuum brazed to a Cu Cr Zr heat sink at 940 oC using the silver-free filler material Cu Mn Si Cr.The microstructure,bonding strength,and high heat flux properties of the brazed W/Cu Cr Zr joint samples were investigated.The W/Cu joint exhibits an average tensile strength of 134 MPa,which is about the same strength as pure annealed copper.High heat flux tests were performed in the electron beam facility EMS-60.Experimental results indicated that the brazed W/Cu Cr Zr mock-up experienced screening tests of up to 15 MW/m^2 and cyclic tests of 9 MW/m^2 for 1000 cycles without visible damage.展开更多
B4C, SiC and C, Cu functionally graded-materials (FGMs) have been developed by plasma spraying and hot pressing. Their high-heat flux properties have been investigated by high energy laser and electron beam for the si...B4C, SiC and C, Cu functionally graded-materials (FGMs) have been developed by plasma spraying and hot pressing. Their high-heat flux properties have been investigated by high energy laser and electron beam for the simulation of plasma disruption process of the future fusion reactors, And a study on eroded products of B4C/Cu FGM under transient thermal load of electron beam was performed. In the experiment, SEM and EDS analysis indicated that B4C and SiC were decomposed, carbon was preferentially evaporated under high thermal load, and a part of Si and Cu were melted, in addition, the splash of melted metal and the particle emission of brittle destruction were also found. Different erosive behaviors of carbon-based materials (CBMs) caused by laser and electron beam were also discussed.展开更多
In this paper,high cis-1,4 content hydroxyl-terminated polybutadiene(cis-HTPB)with different molecular weights was prepared through the oxidative cracking process using cis-butadiene rubber as raw material.Firstly,thi...In this paper,high cis-1,4 content hydroxyl-terminated polybutadiene(cis-HTPB)with different molecular weights was prepared through the oxidative cracking process using cis-butadiene rubber as raw material.Firstly,this article comprehensively compared the differences between cis-HTPB and conventional I-HTPB in terms of molecular weight distribution,functionality,viscosity,molecular polarity,and other physicochemical properties,which provided effective data support for its subsequent application.In addition,the reaction kinetics study showed that cis-HTPB with isocyanate curing agent has high reactivity,allowing it to be rapidly cured at low temperatures,and the cured elastomers had excellent mechanical properties,with tensile strength and elongation up to 1.89 MPa and 1100%,respectively.It was also found that cis-HTPB has extremely excellent low-temperature resistance,and the glass transition temperature(T_(g))of its cured elastomer is as low as-101℃.Based on the above studies,cis-HTPB is applied as a binder in composite solid propellants for the first time to investigate its practical performance,and the results indicated that cis-HTPB-based propellants have excellent process and mechanical properties.展开更多
The tensile properties of three different carbonfiberreinforced carbon composites (C/C), mat C/C, 2D laminate and 4D C/C, were investigated under the combined influence of temperature and loading rate. From the experi...The tensile properties of three different carbonfiberreinforced carbon composites (C/C), mat C/C, 2D laminate and 4D C/C, were investigated under the combined influence of temperature and loading rate. From the experiments the following could be concluded: loading rate between 10-1-10 mm/min was valid; the fracture stress of the three kinds of C/C composites increased with increasing temperature in the range from room temperature to 1900, and the initial modulus of 2D laminate C/C composites increased with the increase of temperature up to 2000.展开更多
Optimum utilization of the loading capability of engineering materials is an important and active contribution to protect nature's limited resources,and it is the key for economic design methods.In order to make u...Optimum utilization of the loading capability of engineering materials is an important and active contribution to protect nature's limited resources,and it is the key for economic design methods.In order to make use of the materials' resources,those must be known very well;but conventional test methods will offer only limited informational value.The range of questions raised is as wide as the application of engineering materials,and partially they are very specific.The development of huge computer powers enables numeric modelling to simulate structural behaviour in rather complex loading environments-so the real material behaviour is known under the given loading conditions.Here the art of material testing design starts.To study the material behaviour under very distinct and specific loading conditions makes it necessary to simulate different temperature ranges,loading speeds, environments etc.and mostly there doesn't exist any commonly agreed test standard.In this contribution two popular,non-standard test procedures and test systems will be discussed on the base of their application background,special design features as well as test results and typically gained information:The demand for highspeed tests up to 1000 s^(-1) of strain rate is very specific and originates primarily in the automotive industry and the answers enable CAE analysis of crashworthiness of vehicle structures under crash conditions.The information on the material behaviour under multiaxial loading conditions is a more general one.Multiaxial stress states can be reduced to an equivalent stress,which allows the evaluation of the material's constraint and criticality of stress state.Both discussed examples shall show that the open dialogue between the user and the producer of testing machines allows custom-tailored test solutions.展开更多
Twenty-eight sweet sorghum (Sorghum bicolor (L.) Moench) genotypes of the different ecological and geographic origins: Kazakhstan, Russia, India, Uzbekistan, and China were tested in the high latitude rainfed con...Twenty-eight sweet sorghum (Sorghum bicolor (L.) Moench) genotypes of the different ecological and geographic origins: Kazakhstan, Russia, India, Uzbekistan, and China were tested in the high latitude rainfed conditions of northern Kazakhstan. The genotypes demonstrated high biomass production (up to 100 t'ha1 and more). The genotypes ripening to full reproductive seeds were selected for seed production and introduction in the northern Kazakhstan. Lactic acid bacteria Lactobacillus plantarum S-1, Streptococcus thermophilus F-1 and Lactococcus lactis F-4 essentially enhance the fermentation process, suppressing undesirable microbiological processes, reducing the loss of nutrient compounds, accelerating in 2 times maturation ensilage process and providing higher quality of the feed product.展开更多
Because various reasons, the tubing near wellhead was collapsed during well testing in high pressure and high temperature deep well when the outer pressure was less than collapsing strength. To find the reasons in the...Because various reasons, the tubing near wellhead was collapsed during well testing in high pressure and high temperature deep well when the outer pressure was less than collapsing strength. To find the reasons in the abnormally collapse and countermeasures, first the quality of the tubing was checked. It was founded that the collapse was not resulted from the defect of the tubing. Then, force and stress exerted in the tubing was analyzed taking XS2 well as an example. The analysis results were concluded as follows. The collapsing strength of tubing decreased due to the axial tensile, which is seriously at the upper tubing especially. During injecting, the additional axial force that was caused by the temperature effect increased the tubing near wellhead to suffer axial tensile and further reduced the collapsing strength of tubing near wellhead. Reinforcing defect, prohibiting defect tubing to trip in hole, according to the calculation to impose appropriate annular pressure, selecting size nozzle to reverse pumping and controlling the reverse pumping speed and pressure, prohibiting to be opened flow and reducing or releasing the annular pressure can prevent the well testing tubing down-hole being collapsed at the wellhead.展开更多
By reviewing the development of “three-high” oil and gas well testing technology of Sinopec in recent years, this paper systematically summarizes the application of “three-high” oil and gas well testing technology...By reviewing the development of “three-high” oil and gas well testing technology of Sinopec in recent years, this paper systematically summarizes the application of “three-high” oil and gas well testing technology of Sinopec in engineering optimization design technology, and high temperature and high pressure testing technology, high pressure and high temperature transformation completion integration technology. Major progress has been made in seven aspects: plug removal and re-production technology of production wells in high acid gas fields;wellbore preparation technology of ultra-deep, high-pressure, and high-temperature oil and gas wells;surface metering technology;and supporting tool development technology. This paper comprehensively analyzes the challenges faced by the “three-high” oil and gas well production testing technology in four aspects: downhole tools, production testing technology, safe production testing, and the development of low-cost production test tools. Four development directions are put forward: 1) Improve ultra-deep oil and gas testing technology and strengthen integrated geological engineering research. 2) Deepen oil and gas well integrity evaluation technology to ensure the life cycle of oil and gas wells. 3) Carry out high-end, customized, and intelligent research on oil test tools to promote the low-cost and efficient development of ultra deep reservoirs. 4) Promote the fully automatic control of the surface metering process to realize the safe development of “three-high” reservoirs.展开更多
Industrially prepared artificial graphite(AG)is attractive for potassium-ion batteries(PIBs),but its rate performance is poor and the production process is energy intensive,so developing an efficient strategy to produ...Industrially prepared artificial graphite(AG)is attractive for potassium-ion batteries(PIBs),but its rate performance is poor and the production process is energy intensive,so developing an efficient strategy to produce novel graphite with low energy consumption and high performance is economically important.Herein,a nanostructured graphite composed of multi-walled carbon nanotubes(MWCNTs)and graphite shells was prepared by one-pot method through low-temperature pyrolysis of iron-based metal-organic framework(MOF)and carbon source.The high graphitization degree of nanostructured graphite makes the initial Coulombic efficiency(ICE)exceed 80%,and the three-dimensional(3D)conductive network ensures a specific capacity of 234 mAh·g^(−1)after 1000 cycles at a high current density of 500 mA·g^(−1).In addition,the typical graphite potassium storage mechanism is also demonstrated by in situ X-ray diffraction(XRD)and in situ Raman spectroscopy,and its practicality is also proved by the voltage of the full cells.This work provides a feasible way to optimize the practical production process of AG and expand its application in energy storage.展开更多
Pulsed power technology,whereas the electrical energy stored in a relative long period is released in much shorter timescale,is an efficient method to create high energy density physics(HEDP)conditions in laboratory.A...Pulsed power technology,whereas the electrical energy stored in a relative long period is released in much shorter timescale,is an efficient method to create high energy density physics(HEDP)conditions in laboratory.Around the beginning of this century,China Academy of Engineering Physics(CAEP)began to build some experimental facilities for HEDP investigations,among which the Primary Test Stand(PTS),a multi-module pulsed power facility with a nominal current of 10 MA and a current rising time~90 ns,is an important achievement on the roadmap of the electro-magnetically driven inertial confinement fusion(ICF)researches.PTS is the first pulsed power facility beyond 10 TW in China.Therefore,all the technologies have to be demonstrated,and all the engineering issues have to be overcome.In this article,the research outline,key technologies and the preliminary HEDP experiments are reviewed.Prospects on HEDP research on PTS and pulsed power development for the next step are also discussed.展开更多
An S-band high-gradient accelerating structure is designed for a proton therapy linear accelerator(linac)to accommodate the new development of compact,singleroom facilities and ultra-high dose rate(FLASH)radiotherapy....An S-band high-gradient accelerating structure is designed for a proton therapy linear accelerator(linac)to accommodate the new development of compact,singleroom facilities and ultra-high dose rate(FLASH)radiotherapy.To optimize the design,an efficient optimization scheme is applied to improve the simulation efficiency.An S-band accelerating structure with 2856 MHz is designed with a low beta of 0.38,which is a difficult structure to achieve for a linac accelerating proton particles from 70 to 250 MeV,as a high gradient up to 50 MV/m is required.A special design involving a dual-feed coupler eliminates the dipole field effect.This paper presents all the details pertaining to the design,fabrication,and cold test results of the S-band high-gradient accelerating structure.展开更多
Based on three kinds of dynamic test of MEMS, a dynamic system for the vibration test of micro machined gyroscope based on high speed photography is introduced. Firstly, the architecture of the system hardware is intr...Based on three kinds of dynamic test of MEMS, a dynamic system for the vibration test of micro machined gyroscope based on high speed photography is introduced. Firstly, the architecture of the system hardware is introduced. Secondly, the image tracking performance is compared by the test using the template matching algorithm, the mean shift algorithm and the SURF algorithm. The vibration curve shows that high speed photograph combined with SURF algorithm is faster, more ac- curate, and more suitable for the vibration test of micro machined gyroscope. After the frequency a- nalysis and related interpolation, more characteristics of micro gyroscope can be obtained.展开更多
In this study,a high specific impulse Hall thruster,HEP-140 MF,having a high discharge voltage,was used to accelerate ions.We aimed to obtain a high specific impulse and an acceleration zone moving downstream toward t...In this study,a high specific impulse Hall thruster,HEP-140 MF,having a high discharge voltage,was used to accelerate ions.We aimed to obtain a high specific impulse and an acceleration zone moving downstream toward the channel exit to reduce wall sputtering erosion of the walls of the discharge channel,hence ensuring an enhanced lifetime.To study the lifetime characteristics of the high specific impulse Hall thruster,a life test was performed on the HEP-140 MF thruster for the first time,and performance parameters,such as thrust,specific impulse,and efficiency,were measured.Changes in the performance parameters and evolutions in the surface profiles of the discharge channel wall were summarized.The reasons contributing to these changes during the life test were analyzed.Moreover,the accelerated life test method was validated on the HEP-140 MF.展开更多
The fracture behaviour of three fiber reinforced and regular HPC (high performance concretes) is presented in this paper. Two mixes are based on optimization of HPC whereas the third mix was a commercial mix develop...The fracture behaviour of three fiber reinforced and regular HPC (high performance concretes) is presented in this paper. Two mixes are based on optimization of HPC whereas the third mix was a commercial mix developed by CONTEC ApS (Denmark). The wedge splitting test setup with 48 cubical specimens was used experimentally and the cracked non-linear hinge model based on the fictitious crack model was applied for the interpretation of the results. The stress-crack opening relationships were extracted by using inverse analysis algorithm for various multi-linear softening curves. This showed that the refinement of the softening curves reflects in improved accuracy of the WST (wedge splitting test) simulation in comparison with bi-linear softening curves with acceptable increase of computational time. Furthermore, the fracture mechanics parameters such as COD (crack opening displacement), fracture energy and characteristic length were experimentally determined. Experiments were performed at 1, 3, 7 and 28 days. Fracture energy, Gf, was found to increase with age, while the characteristic length, Lch, was found to decrease.展开更多
Recently, the effects of high temperature on compressive strength and elastic modulus of high strength concrete were experimentally investigated. The present study is aimed to study the effect of elevated temperatures...Recently, the effects of high temperature on compressive strength and elastic modulus of high strength concrete were experimentally investigated. The present study is aimed to study the effect of elevated temperatures ranging from 20 ℃ to 700 ℃ on the material mechanical properties of high-strength concrete of 40, 60 and 80 MPa grade. During the strength test, the specimens are subjected to a 25% of ultimate compressive strength at room temperature and sustained during heating, and when the target temperature is reached, the specimens are loaded to failure. The tests were conducted at various temperatures (20-700 ℃) for concretes made with W/B ratios of 46%, 32% and 25%, respectively. The results show that the relative values of compressive strength and elastic modulus decrease with increasing compressive strength grade of specimen.展开更多
文摘Aqueous zinc-ion batteries are regarded as the promising candidates for large-scale energy storage systems owing to low cost and high safety;however,their applications are restricted by their poor low-temperature performance.Herein,a low-temperature electrolyte for low-temperature aqueous zinc-ion batteries is designed by introducing low-polarity diglyme into an aqueous solution of Zn(ClO_(4))_(2).The diglyme disrupts the hydrogenbonding network of water and lowers the freezing point of the electrolyte to-105℃.The designed electrolyte achieves ionic conductivity up to16.18 mS cm^(-1)at-45℃.The diglyme and ClO_(4)^(-)reconfigure the solvated structure of Zn^(2+),which is more favorable for the desolvation of Zn^(2+)at low temperatures.In addition,the diglyme effectively suppresses the dendrites,hydrogen evolution reaction,and by-products of the zinc anode,improving the cycle stability of the battery.At-20℃,a Zn‖Zn symmetrical cell is cycled for 5200 h at 1 mA cm^(-2)and 1 mA h cm^(-2),and a Zn‖polyaniline battery achieves an ultra-long cycle life of 10000 times.This study sheds light on the future design of electrolytes with high ionic conductivity and easy desolvation at low temperatures for rechargeable batteries.
文摘In the process of food testing,human operation is an important variable affecting the experimental results.In order to reasonably avoid the influence of human subjective operation behavior on the accuracy of detection results,the laboratory information management system was used as the information platform to design a high-throughput laboratory automation pre-treatment system based on the deep integration of mechanical principles,visual analysis,high-speed conduction,intelligent storage and other technical systems.The experimental results showed that the system could shorten the sample circulation cycle,effectively improve the laboratory biosafety,and meet the requirements of high-throughput processing of samples.
文摘The mechanical behavior of the test string in deep wells is generally relatively complex as a result of the high temperature and high pressure,severe dogleg and buckling effects,which in some circumstances can even lead to string failure.Traditional computational methods for the analysis of these behaviors are often inaccurate.For this reason,here a more accurate mechanical model of the test string is introduced by considering variables such as temperature,pressure,wellbore trajectory,and buckling,as well as combining them with the deformation and string constraint conditions brought in by changes in temperature and pressure during the tripping,setting,and test operations.The model is validated by applying it to a specific high-pressure gas well(located in Northeast Sichuan).
基金supported by the National Natural Science Foundation of China (Nos. 11922504 and 12027902)
文摘X-band high-gradient linear accelerators are a challenging and attractive technology for compact electron linear-accelerator facilities.The Very Compact Inverse Compton Scattering Gamma-ray Source(VIGAS)program at Tsinghua University will utilize X-band high-gradient accelerating structures to boost the electron beam from 50 to 350 MeV over a short distance.A constant-impedance traveling-wave structure consisting of 72 cells working in the 2π/3 mode was designed and fabricated for this project.Precise tuning and detailed measurements were successfully applied to the structure.After 180 h of conditioning in the Tsinghua high-power test stand,the structure reached a target gradient of 80 MV/m.The breakdown rate versus gradient of this structure was measured and analyzed.
基金supported by National Natural Science Foundation of China(No.11205049)the National Magnetic Confinement Fusion Science Program of China(No.2011GB110004)
文摘Water-cooled flat-type W/Cu Cr Zr plasma facing components with an interlayer of oxygen-free copper(OFC) have been developed by using vacuum brazing route.The OFC layer for the accommodation of thermal stresses was cast onto the surface of W at a temperature range of 1150oC-1200 oC in a vacuum furnace.The W/OFC cast tiles were vacuum brazed to a Cu Cr Zr heat sink at 940 oC using the silver-free filler material Cu Mn Si Cr.The microstructure,bonding strength,and high heat flux properties of the brazed W/Cu Cr Zr joint samples were investigated.The W/Cu joint exhibits an average tensile strength of 134 MPa,which is about the same strength as pure annealed copper.High heat flux tests were performed in the electron beam facility EMS-60.Experimental results indicated that the brazed W/Cu Cr Zr mock-up experienced screening tests of up to 15 MW/m^2 and cyclic tests of 9 MW/m^2 for 1000 cycles without visible damage.
文摘B4C, SiC and C, Cu functionally graded-materials (FGMs) have been developed by plasma spraying and hot pressing. Their high-heat flux properties have been investigated by high energy laser and electron beam for the simulation of plasma disruption process of the future fusion reactors, And a study on eroded products of B4C/Cu FGM under transient thermal load of electron beam was performed. In the experiment, SEM and EDS analysis indicated that B4C and SiC were decomposed, carbon was preferentially evaporated under high thermal load, and a part of Si and Cu were melted, in addition, the splash of melted metal and the particle emission of brittle destruction were also found. Different erosive behaviors of carbon-based materials (CBMs) caused by laser and electron beam were also discussed.
基金the support from the Open Research Fund Program of Science and Technology on Aerospace Chemical Power Laboratory(Grant No.STACPL120221B03)the National Natural Science Foundation of China(Grant No.22175059).
文摘In this paper,high cis-1,4 content hydroxyl-terminated polybutadiene(cis-HTPB)with different molecular weights was prepared through the oxidative cracking process using cis-butadiene rubber as raw material.Firstly,this article comprehensively compared the differences between cis-HTPB and conventional I-HTPB in terms of molecular weight distribution,functionality,viscosity,molecular polarity,and other physicochemical properties,which provided effective data support for its subsequent application.In addition,the reaction kinetics study showed that cis-HTPB with isocyanate curing agent has high reactivity,allowing it to be rapidly cured at low temperatures,and the cured elastomers had excellent mechanical properties,with tensile strength and elongation up to 1.89 MPa and 1100%,respectively.It was also found that cis-HTPB has extremely excellent low-temperature resistance,and the glass transition temperature(T_(g))of its cured elastomer is as low as-101℃.Based on the above studies,cis-HTPB is applied as a binder in composite solid propellants for the first time to investigate its practical performance,and the results indicated that cis-HTPB-based propellants have excellent process and mechanical properties.
文摘The tensile properties of three different carbonfiberreinforced carbon composites (C/C), mat C/C, 2D laminate and 4D C/C, were investigated under the combined influence of temperature and loading rate. From the experiments the following could be concluded: loading rate between 10-1-10 mm/min was valid; the fracture stress of the three kinds of C/C composites increased with increasing temperature in the range from room temperature to 1900, and the initial modulus of 2D laminate C/C composites increased with the increase of temperature up to 2000.
文摘Optimum utilization of the loading capability of engineering materials is an important and active contribution to protect nature's limited resources,and it is the key for economic design methods.In order to make use of the materials' resources,those must be known very well;but conventional test methods will offer only limited informational value.The range of questions raised is as wide as the application of engineering materials,and partially they are very specific.The development of huge computer powers enables numeric modelling to simulate structural behaviour in rather complex loading environments-so the real material behaviour is known under the given loading conditions.Here the art of material testing design starts.To study the material behaviour under very distinct and specific loading conditions makes it necessary to simulate different temperature ranges,loading speeds, environments etc.and mostly there doesn't exist any commonly agreed test standard.In this contribution two popular,non-standard test procedures and test systems will be discussed on the base of their application background,special design features as well as test results and typically gained information:The demand for highspeed tests up to 1000 s^(-1) of strain rate is very specific and originates primarily in the automotive industry and the answers enable CAE analysis of crashworthiness of vehicle structures under crash conditions.The information on the material behaviour under multiaxial loading conditions is a more general one.Multiaxial stress states can be reduced to an equivalent stress,which allows the evaluation of the material's constraint and criticality of stress state.Both discussed examples shall show that the open dialogue between the user and the producer of testing machines allows custom-tailored test solutions.
文摘Twenty-eight sweet sorghum (Sorghum bicolor (L.) Moench) genotypes of the different ecological and geographic origins: Kazakhstan, Russia, India, Uzbekistan, and China were tested in the high latitude rainfed conditions of northern Kazakhstan. The genotypes demonstrated high biomass production (up to 100 t'ha1 and more). The genotypes ripening to full reproductive seeds were selected for seed production and introduction in the northern Kazakhstan. Lactic acid bacteria Lactobacillus plantarum S-1, Streptococcus thermophilus F-1 and Lactococcus lactis F-4 essentially enhance the fermentation process, suppressing undesirable microbiological processes, reducing the loss of nutrient compounds, accelerating in 2 times maturation ensilage process and providing higher quality of the feed product.
文摘Because various reasons, the tubing near wellhead was collapsed during well testing in high pressure and high temperature deep well when the outer pressure was less than collapsing strength. To find the reasons in the abnormally collapse and countermeasures, first the quality of the tubing was checked. It was founded that the collapse was not resulted from the defect of the tubing. Then, force and stress exerted in the tubing was analyzed taking XS2 well as an example. The analysis results were concluded as follows. The collapsing strength of tubing decreased due to the axial tensile, which is seriously at the upper tubing especially. During injecting, the additional axial force that was caused by the temperature effect increased the tubing near wellhead to suffer axial tensile and further reduced the collapsing strength of tubing near wellhead. Reinforcing defect, prohibiting defect tubing to trip in hole, according to the calculation to impose appropriate annular pressure, selecting size nozzle to reverse pumping and controlling the reverse pumping speed and pressure, prohibiting to be opened flow and reducing or releasing the annular pressure can prevent the well testing tubing down-hole being collapsed at the wellhead.
文摘By reviewing the development of “three-high” oil and gas well testing technology of Sinopec in recent years, this paper systematically summarizes the application of “three-high” oil and gas well testing technology of Sinopec in engineering optimization design technology, and high temperature and high pressure testing technology, high pressure and high temperature transformation completion integration technology. Major progress has been made in seven aspects: plug removal and re-production technology of production wells in high acid gas fields;wellbore preparation technology of ultra-deep, high-pressure, and high-temperature oil and gas wells;surface metering technology;and supporting tool development technology. This paper comprehensively analyzes the challenges faced by the “three-high” oil and gas well production testing technology in four aspects: downhole tools, production testing technology, safe production testing, and the development of low-cost production test tools. Four development directions are put forward: 1) Improve ultra-deep oil and gas testing technology and strengthen integrated geological engineering research. 2) Deepen oil and gas well integrity evaluation technology to ensure the life cycle of oil and gas wells. 3) Carry out high-end, customized, and intelligent research on oil test tools to promote the low-cost and efficient development of ultra deep reservoirs. 4) Promote the fully automatic control of the surface metering process to realize the safe development of “three-high” reservoirs.
基金the financial support from the National Key Research and Development Program of China(Nos.2022YFB2404300 and 2023YFB3809303)the National Natural Science Foundation of China(Nos.51832004 and 52127816)State Key Laboratory of Advanced Technology for Materials Synthesis and Processing(No.WUT:2022-KF-4).
文摘Industrially prepared artificial graphite(AG)is attractive for potassium-ion batteries(PIBs),but its rate performance is poor and the production process is energy intensive,so developing an efficient strategy to produce novel graphite with low energy consumption and high performance is economically important.Herein,a nanostructured graphite composed of multi-walled carbon nanotubes(MWCNTs)and graphite shells was prepared by one-pot method through low-temperature pyrolysis of iron-based metal-organic framework(MOF)and carbon source.The high graphitization degree of nanostructured graphite makes the initial Coulombic efficiency(ICE)exceed 80%,and the three-dimensional(3D)conductive network ensures a specific capacity of 234 mAh·g^(−1)after 1000 cycles at a high current density of 500 mA·g^(−1).In addition,the typical graphite potassium storage mechanism is also demonstrated by in situ X-ray diffraction(XRD)and in situ Raman spectroscopy,and its practicality is also proved by the voltage of the full cells.This work provides a feasible way to optimize the practical production process of AG and expand its application in energy storage.
文摘Pulsed power technology,whereas the electrical energy stored in a relative long period is released in much shorter timescale,is an efficient method to create high energy density physics(HEDP)conditions in laboratory.Around the beginning of this century,China Academy of Engineering Physics(CAEP)began to build some experimental facilities for HEDP investigations,among which the Primary Test Stand(PTS),a multi-module pulsed power facility with a nominal current of 10 MA and a current rising time~90 ns,is an important achievement on the roadmap of the electro-magnetically driven inertial confinement fusion(ICF)researches.PTS is the first pulsed power facility beyond 10 TW in China.Therefore,all the technologies have to be demonstrated,and all the engineering issues have to be overcome.In this article,the research outline,key technologies and the preliminary HEDP experiments are reviewed.Prospects on HEDP research on PTS and pulsed power development for the next step are also discussed.
基金This work was supported by the Alliance of International Science Organizations(No.ANSO-CR-KP-2020-16).
文摘An S-band high-gradient accelerating structure is designed for a proton therapy linear accelerator(linac)to accommodate the new development of compact,singleroom facilities and ultra-high dose rate(FLASH)radiotherapy.To optimize the design,an efficient optimization scheme is applied to improve the simulation efficiency.An S-band accelerating structure with 2856 MHz is designed with a low beta of 0.38,which is a difficult structure to achieve for a linac accelerating proton particles from 70 to 250 MeV,as a high gradient up to 50 MV/m is required.A special design involving a dual-feed coupler eliminates the dipole field effect.This paper presents all the details pertaining to the design,fabrication,and cold test results of the S-band high-gradient accelerating structure.
文摘Based on three kinds of dynamic test of MEMS, a dynamic system for the vibration test of micro machined gyroscope based on high speed photography is introduced. Firstly, the architecture of the system hardware is introduced. Secondly, the image tracking performance is compared by the test using the template matching algorithm, the mean shift algorithm and the SURF algorithm. The vibration curve shows that high speed photograph combined with SURF algorithm is faster, more ac- curate, and more suitable for the vibration test of micro machined gyroscope. After the frequency a- nalysis and related interpolation, more characteristics of micro gyroscope can be obtained.
基金supported by Space Advance Research program (No. D010509)National Natural Science Foundation of China (No. 51806011)National Defense Pre-Research Foundation of China (No. JSZL2016203C006)。
文摘In this study,a high specific impulse Hall thruster,HEP-140 MF,having a high discharge voltage,was used to accelerate ions.We aimed to obtain a high specific impulse and an acceleration zone moving downstream toward the channel exit to reduce wall sputtering erosion of the walls of the discharge channel,hence ensuring an enhanced lifetime.To study the lifetime characteristics of the high specific impulse Hall thruster,a life test was performed on the HEP-140 MF thruster for the first time,and performance parameters,such as thrust,specific impulse,and efficiency,were measured.Changes in the performance parameters and evolutions in the surface profiles of the discharge channel wall were summarized.The reasons contributing to these changes during the life test were analyzed.Moreover,the accelerated life test method was validated on the HEP-140 MF.
文摘The fracture behaviour of three fiber reinforced and regular HPC (high performance concretes) is presented in this paper. Two mixes are based on optimization of HPC whereas the third mix was a commercial mix developed by CONTEC ApS (Denmark). The wedge splitting test setup with 48 cubical specimens was used experimentally and the cracked non-linear hinge model based on the fictitious crack model was applied for the interpretation of the results. The stress-crack opening relationships were extracted by using inverse analysis algorithm for various multi-linear softening curves. This showed that the refinement of the softening curves reflects in improved accuracy of the WST (wedge splitting test) simulation in comparison with bi-linear softening curves with acceptable increase of computational time. Furthermore, the fracture mechanics parameters such as COD (crack opening displacement), fracture energy and characteristic length were experimentally determined. Experiments were performed at 1, 3, 7 and 28 days. Fracture energy, Gf, was found to increase with age, while the characteristic length, Lch, was found to decrease.
基金The Korea Research Foundation Grant and Brain Korea 21-2th (BK21-2th) funded by the Korean government (MOEHRD,Basic Research Promotion Fund) (KRF-2007-314-D00271)
文摘Recently, the effects of high temperature on compressive strength and elastic modulus of high strength concrete were experimentally investigated. The present study is aimed to study the effect of elevated temperatures ranging from 20 ℃ to 700 ℃ on the material mechanical properties of high-strength concrete of 40, 60 and 80 MPa grade. During the strength test, the specimens are subjected to a 25% of ultimate compressive strength at room temperature and sustained during heating, and when the target temperature is reached, the specimens are loaded to failure. The tests were conducted at various temperatures (20-700 ℃) for concretes made with W/B ratios of 46%, 32% and 25%, respectively. The results show that the relative values of compressive strength and elastic modulus decrease with increasing compressive strength grade of specimen.