An accurate mapping and understanding of remaining oil distribution is very important for water control and stabilize oil production of mature oilfields in ultra-high water-cut stage.Currently,the Tuo-21 Fault Block o...An accurate mapping and understanding of remaining oil distribution is very important for water control and stabilize oil production of mature oilfields in ultra-high water-cut stage.Currently,the Tuo-21 Fault Block of the Shengtuo Oilfield has entered the stage of ultra-high water cut(97.2%).Poor adaptability of the well pattern,ineffective water injection cycle and low efficiency of engineering measures(such as workover,re-perforation and utilization of high-capacity pumps)are the significant problems in the ultra-high water-cut reservoir.In order to accurately describe the oil and water flow characteristics,relative permeability curves at high water injection multiple(injected pore volume)and a semiquantitative method is applied to perform fine reservoir simulation of the Sand group 3e7 in the Block.An accurate reservoir model is built and history matching is performed.The distribution characteristics of remaining oil in lateral and vertical directions are quantitatively simulated and analyzed.The results show that the numerical simulation considering relative permeability at high injection multiple can reflect truly the remaining oil distribution characteristics after water flooding in an ultrahigh water-cut stage.The distribution of remaining oil saturation can be mapped more accurately and quantitatively by using the‘four-points and five-types’classification method,providing a basis for potential tapping of various remaining oil types of oil reservoirs in late-stage of development with high water-cut.展开更多
Magnesium alloys with a long-period stacking ordered(LPSO)structure usually possess excellent static strength,but their fatigue behaviors are poorly understood.This work presents the effect of the LPSO structure on th...Magnesium alloys with a long-period stacking ordered(LPSO)structure usually possess excellent static strength,but their fatigue behaviors are poorly understood.This work presents the effect of the LPSO structure on the crack behaviors of Mg alloys in a very high cycle fatigue(VHCF)regime.The LPSO lamellas lead to a facet-like cracking process along the basal planes at the crack initiation site and strongly prohibit the early crack propagation by deflecting the growth direction.The stress intensity factor at the periphery of the faceted area is much higher than the conventional LPSO-free Mg alloys,contributing higher fatigue crack propagation threshold of LPSO-containing Mg alloys.Microstructure observation at the facets reveals a layer of ultrafine grains at the fracture surface due to the cyclic contact of the crack surface,which supports the numerous cyclic pressing model describing the VHCF crack initiation behavior.展开更多
The ultra-high cycle fatigue behavior of a novel high strength steel with carbide-free bainite/martensite (CFB/M) complex microstructure was studied. The ultra-high cycle fatigue properties were measured by ultrason...The ultra-high cycle fatigue behavior of a novel high strength steel with carbide-free bainite/martensite (CFB/M) complex microstructure was studied. The ultra-high cycle fatigue properties were measured by ultrasonic fatigue testing equipment at a frequency of 20 kHz. It is found that there is no horizontal part in the S-N curve and fatigue fracture occurs when the life of specimens exceeds 10^7 cycles. In addition, the origination of fatigue cracks tends to transfer from the surface to interior of specimens as the fatigue cycle exceeds 10^7, and the fatigue crack originations of many specimens are not induced by inclusions, but by some kind of "soft structure". It is shown that the studied high strength steel performs good ultra-high cycle fatigue properties. The ultra-high fatigue mechanism was discussed and it is suggested that specific CFB/M complex microstructure of the studied steel contributes to its superior properties.展开更多
The fatigue life of numerous aerospace,locomotive,automotive and biomedical structures may go beyond 10~8 cycles.Determination of long life fatigue behavior becomes extremely important for better understanding and des...The fatigue life of numerous aerospace,locomotive,automotive and biomedical structures may go beyond 10~8 cycles.Determination of long life fatigue behavior becomes extremely important for better understanding and design of the components and structures.Initially,before the invention of ultrasonic fatigue testing,most of the engineering materials were supposed to exhibit fatigue life up to 10~7 cycles or less.This paper reviews current understanding of some fundamental aspects on the development of accelerated fatigue testing method and its application in ultra-high cycle fatigue,crack initiation and growth mechanisms of internal fracture,S-N diagram,fatigue limit and life prediction, etc.展开更多
The second generation single crystal superalloy DD6 with 0.10%Hf and 0.34%Hf (in mass fraction) was subjected to high-cycle fatigue (HCF) loading at temperatures of 700 ℃ in ambient atmosphere. SEM was used to de...The second generation single crystal superalloy DD6 with 0.10%Hf and 0.34%Hf (in mass fraction) was subjected to high-cycle fatigue (HCF) loading at temperatures of 700 ℃ in ambient atmosphere. SEM was used to determine the initiation site and the failure mechanism. Evolution of the microstructure was investigated by TEM observation. The results show that fatigue limit of DD6 alloy with 0.34%Hf is a little smaller than that of the alloy with 0.10%Hf. The fatigue cracks initiated on the surface or near the surface of the specimens. The crack would propagate along { 111 } octahedral slip planes, rather than perpendicular to the loading axis of specimen. Typical fatigue striation formed in steady propagation of fatigue crack. The fracture mechanisms of the high cycle fatigue of DD6 alloys with 0.10%Hf and 0.34%Hf are quasi-cleavage fracture. Different types of dislocation structures were developed during high cycle fatigue deformation.展开更多
This work aims to investigate the effect of main inclusions on crack initiation in bearing steel in the very high cycle fatigue(VHCF) regime. The size and type of inclusions in the steel were quantitatively analyzed...This work aims to investigate the effect of main inclusions on crack initiation in bearing steel in the very high cycle fatigue(VHCF) regime. The size and type of inclusions in the steel were quantitatively analyzed, and VHCF tests were performed. Some fatigue cracks were found to be initiated in the gaps between inclusions(Al2 O3, Mg O-Al2 O3) and the matrix, while other cracks originated from the interior of inclusions(Ti N, Mn S). To explain the related mechanism, the tessellated stresses between inclusions and the matrix were calculated and compared with the yield stress of the matrix. Results revealed that the inclusions could be classified into two types under VHCF; of these two, only one type could be regarded as holes. Findings in this research provide a better understanding of how inclusions affect the high cycle fatigue properties of bearing steel.展开更多
The internal curing effect of superabsorbent polymer(SAP) on the properties of high performance concrete(HPC) under marine wetting and drying cycles(WD cycles) was investigated. Compressive strength, hydration and chl...The internal curing effect of superabsorbent polymer(SAP) on the properties of high performance concrete(HPC) under marine wetting and drying cycles(WD cycles) was investigated. Compressive strength, hydration and chloride migration were experimentally investigated and the results were evaluated by compasison with those under fresh water curing(FW). Water absorption and porosity were also evaluated only under WD cycles. The results showed the important influence of wetting and drying cycles on the properties of SAP modified HPC properties. Carefully designed, SAP minimized the long-term compressive strength of HPC under marine WD cycles. The hydration rate was faster in the initial curing, but became lower as compared with that cured in FW. In addition, SAP improved the long-term water absorption resistance and chloride migration resistance of HPC under marine WD cycles. The examination of the porosity showed a lower increase of the volume of capillary pores in SAP modified HPC under long term WD cycles compared with that without SAP. Therefore, internal curing by SAP could improve the durability properties of HPC under marine WD cycles.展开更多
A greenness evaluation index and system of microwave-assisted leaching method were established.The effects of the life cycle assessment variables,such as the resource consumption,environment impact,cost,time and quali...A greenness evaluation index and system of microwave-assisted leaching method were established.The effects of the life cycle assessment variables,such as the resource consumption,environment impact,cost,time and quality,were investigated,and the concept of green degree was applied in the production of synthetic rutile.An analytic hierarchy process was utilized to assess matrix of greenness evaluation.The Gauss-Seidel iterative matrix method was employed to solve the assessment matrix and obtain the weights and membership functions of all evaluation indexes.A fuzzy decision-making method was applied to build the greenness evaluation model,and then the scores of green degree in microwave-assisted leaching process was obtained.The greenness evaluation model was applied to the life cycle assessment of the microwave-assisted leaching process.The results show that the microwave-assisted leaching process has advantages over the conventional ones,with respect to energy-consumption,processing time and environmental protection.展开更多
Friction stir welding (FSW) of 6061 aluminium alloy butt joint was carried out at each rotation speed of 600, 800, 1000, 1200 r/min for two different travel speeds, 80 and 100 mm/min, at a constant probe depth of 1....Friction stir welding (FSW) of 6061 aluminium alloy butt joint was carried out at each rotation speed of 600, 800, 1000, 1200 r/min for two different travel speeds, 80 and 100 mm/min, at a constant probe depth of 1.85 mm. The calculated energy input based on the FSW parameters studied shows that the ultimate tensile strength (UTS) of the butt joint is obtained within a certain range of energy input of 297 kJ to 354 kJ out of total range of energy input studied from 196 kJ to 405 kJ. The fatigue behaviors of high-strength and low-strength joints performed at different stress ratios, i.e., 0.5, 0.3, 0.1, -0.3, -0.5, indicate that the fatigue behaviors of both the welds are sensitive to the microstructural features, such as stir zone (SZ), thermo mechanically affected zone (TMAZ) and heat affected zone (HAZ). The observed fatigue strengths were discussed in terms of the microstructure, crack path behavior and fracture surface.展开更多
The poor structural stability and capacity retention of the high-voltage spinel-type LiNi_(0.5)Mn_(1.5)O_(4)(LNMO)limits their further application.Herein,Al and Co were doped in LNMO materials for a more stable struct...The poor structural stability and capacity retention of the high-voltage spinel-type LiNi_(0.5)Mn_(1.5)O_(4)(LNMO)limits their further application.Herein,Al and Co were doped in LNMO materials for a more stable structure and capacity.The LNMO,LiNi_(0.45)Al_(0.05)Mn_(1.5)O_(4)(LNAMO)and LiNi_(0.45)Co_(0.05)Mn_(1.5)O_(4)(LNCMO)were synthesized by calcination at 900℃ for 8 h,which was called as solid-phase method and applied universally in industry.XRD,FT-IR and CV test results showed the synthesized samples have cation disordering Fd-3m space group structures.Moreover,the incorporation of Al and Co increased the cation disordering of LNMO,thereby increasing the transfer rate of Li+.The SEM results showed that the doped samples performed more regular and ortho-octahedral.The EDS elemental analysis confirmed the uniform distribution of each metal element in the samples.Moreover,the doped samples showed better electrochemical properties than undoped LNMO.The LNAMO and LNCMO samples were discharged with specific capacities of 116.3 mA·h·g^(-1)and 122.8 mA·h·g^(-1)at 1 C charge/discharge rate with good capacity retention of 95.8% and 94.8% after 200 cycles at room temperature,respectively.The capacity fading phenomenon of the doped samples at 50℃ and 1 C rate was significantly improved.Further,cations doping also enhanced the rate performance,especially for the LNCMO,the discharge specific capacity of 117.9 mA·h·g^(-1)can be obtained at a rate of 5 C.展开更多
The effect of hot-forging process was investigated on microstructural and mechanical properties of AZ31 B alloy and AZ31 B/1.5 vol.%Al2 O3 nanocomposite under static and cycling loading. The as-cast alloy and composit...The effect of hot-forging process was investigated on microstructural and mechanical properties of AZ31 B alloy and AZ31 B/1.5 vol.%Al2 O3 nanocomposite under static and cycling loading. The as-cast alloy and composite were firstly subjected to a homogenization heat treatment at 450 ℃ and then an open-die forging at 450 ℃. The results indicated that the presence of reinforcing particles led to grain refinement and improvement of dynamic recrystallization. The forging process was more effective to eliminate the porosity in the cast alloy workpiece. Microhardness of the forged composite was increased by up to 80% and 16%, in comparison with those of the cast and forged alloy samples, respectively. Ultimate tensile strength and maximum tensile strain of the composite were improved by up to 45% and 23%, compared with those of the forged alloy in similar regions. These enhancements were respectively 50% and 37% in the compression test. The composite exhibited a fatigue life improvement in the region with low applied strain;however, a degradation was observed in the high applied strain region. Unlike AZ31 B samples, tensile, compressive and high cycle fatigue behaviors of the composite showed less sensitivity to the applied strain, which can be attributed to the amount of porosity in the samples before and after the hot-forging.展开更多
The high cycle fatigue response of a high V-alloyed powder metallurgy tool steel (AISI 11) with different inclusion sizes was studied. Two materials of this grade at a similar hardness of about HRC 60 were subjected...The high cycle fatigue response of a high V-alloyed powder metallurgy tool steel (AISI 11) with different inclusion sizes was studied. Two materials of this grade at a similar hardness of about HRC 60 were subjected to axial loading fatigue tests, tensile tests and fracture toughness measurements to investigate their mechanical properties. Large inclusion above 70 ~rn is indicated to be responsible for the tensile fracture which happens before yielding. The fatigue strength obtained up to 107 cycles is found to decrease from approximately 1 538 MPa to 1000 MPa with the inclusion size increasing above 30 Izm. The internally induced crack initiation is mainly attributed to the surface compressive residual stress of 300-450 MPa. Fractographic evaluation demonstrates that the crack initiation and propagation controlling factors of the two materials are almost the same, indicating that the two factors would be insignificantly affected by the inclusion size level. Paris sizes of the two materials both show a tendency to decrease as the ratio of stress intensity factor of crack origin to factor of fish-eye increases. The investigation into the relationship between stress intensity factors and fatigue life of the two materials further indicates that the high cycle fatigue behavior of AISI 11 is controlled by crack propagation.展开更多
The hardness, the tensile and the high-cycle fatigue(HCF) performances of 7075 aluminum alloy were investigated under temper T651, solution treated at 380 ℃ for 0.5 h and aged at different temperatures(150, 170, 1...The hardness, the tensile and the high-cycle fatigue(HCF) performances of 7075 aluminum alloy were investigated under temper T651, solution treated at 380 ℃ for 0.5 h and aged at different temperatures(150, 170, 190 ℃) for 10 hours. The optimal microstructures and the fatigue fracture surfaces were observed. The results show that the hardness and the tensile performances are at their optimum at T651, but the fatigue life is the shortest. The hardness and the elongation are the lowest after solution treatment. With the aging temperature increasing(150-190 ℃), the HCF is improved. The crack is initiated from the impurity particles on the subsurface. Treated at 170 ℃,the area of the quasi-cleavage plane and the width of parallel serrated sections of the crack propagation are the largest. With increasing aging temperature, the dimple size of finally fracture surfaces becomes larger and the depth deeper.展开更多
Very high cycle fatigue(VHCF) behaviors of bridge steel(Q345) welded joints were investigated using an ultrasonic fatigue test system at room temperature with a stress ratio R = -1. The results show that the fatig...Very high cycle fatigue(VHCF) behaviors of bridge steel(Q345) welded joints were investigated using an ultrasonic fatigue test system at room temperature with a stress ratio R = -1. The results show that the fatigue strength of welded joints is dropped by an average of 60% comparing to the base metal and the fatigue failure still occurred beyond 10~7 cycles.The fatigue fracture of welded joints in the low cycle regime generally occurred at the solder while at the heat-affected zone(HAZ) in the very high cycle regime.The fatigue fracture surface was analyzed with scanning electron microscopy(SEM),showing welding defects such as pore,micro-crack and inclusion were the main factors on decreasing the fatigue properties of welded joints.The effect of welding defects on the fatigue behaviors of welded joints was discussed in terms of experimental results and finite element simulations.展开更多
In this paper, ultrasonic (20 kHz) fatigue tests were performed on specimens of a high-strength steel in very high cycle fatigue (VHCF) regime. Experimental results showed that for most tested specimens failed in ...In this paper, ultrasonic (20 kHz) fatigue tests were performed on specimens of a high-strength steel in very high cycle fatigue (VHCF) regime. Experimental results showed that for most tested specimens failed in a VHCF regime, a fatigue crack originated from the interior of specimen with a fish-eye pattern, which contained a fine granular area (FGA) centered by an inclusion as the crack origin. Then, a two-parameter model is proposed to predict the fatigue life of high-strength steels with fish-eye mode failure in a VHCF regime, which takes into account the inclusion size and the FGA size. The model was verified by the data of present experiments and those in the literature. Furthermore, an analytic formula was obtained for estimating the equivalent crack growth rate within the FGA. The results also indicated that the stress intensity factor range at the front of the FGA varies within a small range, which is irrespective of stress amplitude and fatigue life.展开更多
Carbon-manganese steel is often applied in components of pipes in nuclear plant. Ultrasonic fatigue tests following low cycle fatigue (LCF) cycles damaged are used to study the strength of very high cycle fatigure ...Carbon-manganese steel is often applied in components of pipes in nuclear plant. Ultrasonic fatigue tests following low cycle fatigue (LCF) cycles damaged are used to study the strength of very high cycle fatigure (VHCF). The comparison of test results of simple VHCF and cumulative fatigue (LCF plus VHCF) shows that LCF load influences the following VHCF strength. Continuum damage mechanics model is extended to VHCF region.展开更多
A model is proposed to correlate the crack growth rate and stress ratio containing very high cycle fatigue regime.The model is verified by the experimental data in literature.Then a formula is derived for the effect o...A model is proposed to correlate the crack growth rate and stress ratio containing very high cycle fatigue regime.The model is verified by the experimental data in literature.Then a formula is derived for the effect of mean stress on fatigue strength,and it is used to estimate the fatigue strength of a bearing steel in very high cycle fatigue regime at different stress ratios.The estimated results are also compared with those by Goodman formula.展开更多
Biomass‐derived carbon is a promising electrode material in energy storage devices.However,how to improve its low capacity and stability,and slow diffusion kinetics during lithium storage remains a challenge.In this ...Biomass‐derived carbon is a promising electrode material in energy storage devices.However,how to improve its low capacity and stability,and slow diffusion kinetics during lithium storage remains a challenge.In this research,we propose a“self‐assembly‐template”method to prepare B,N codoped porous carbon(BN‐C)with a nanosandwich structure and abundant pyridinic N‐B species.The nanosandwich structure can increase powder density and cycle stability by constructing a stable solid electrolyte interphase film,shortening the Li^(+)diffusion pathway,and accommodating volume expansion during repeated charging/discharging.The abundant pyridinic N‐B species can simultaneously promote the adsorption/desorption of Li^(+)/PF_(6)^(−)and reduce the diffusion barrier.The BN‐C electrode showed a high lithium‐ion storage capacity of above 1140 mAh g^(−1)at 0.05 A g^(−1)and superior stability(96.5%retained after 2000 cycles).Moreover,owing to the synergistic effect of the nanosandwich structure and pyridinic N‐B species,the assembled symmetrical BN‐C//BN‐C full cell shows a high energy density of 234.7Wh kg^(−1),high power density of 39.38 kW kg−1,and excellent cycling stability,superior to most of the other cells reported in the literature.As the density functional theory simulation demonstrated,pyridinic N‐B shows enhanced adsorption activity for Li^(+)and PF_(6)^(−),which promotes an increase in the capacity of the anode and cathode,respectively.Meanwhile,the relatively lower diffusion barrier of pyridinic N‐B promotes Li^(+)migration,resulting in good rate performance.Therefore,this study provides a new approach for the synergistic modulation of a nanostructure and an active site simultaneously to fabricate the carbon electrode material in energy storage devices.展开更多
The effect of addition of different concentrations of Ce on high-cycle fatigue behavior of die-cast magnesium alloy AZ91D was investigated. Mechanical fatigue tests were conducted at the stress ratio of R = 0.1, and f...The effect of addition of different concentrations of Ce on high-cycle fatigue behavior of die-cast magnesium alloy AZ91D was investigated. Mechanical fatigue tests were conducted at the stress ratio of R = 0.1, and fatigue strength was evaluated using up-and-down loading method. The results show that the grain size of AZ91D alloy is remarkably refined, and the amount of porosity decreases and evenly distributes with the addition of Ce. The fatigue strength of AZ91D alloy at room temperature increases from 96.7 up to 116.3 MPa ( 1% Ce) and 105.5 MPa (2 % Ce), respectively, at the number of cycles to failure, Nf = 1 × 10^7. The fatigue crack of AZ91D alloy initiates at porosities and inclusions, and propagates along grain boundaries. The fatigue striations on fractured surface appear with Ce addition. The fatigue fracture surface of test specimens shows mixed-fracture characteristics of quasi-cleavage and dimple.展开更多
Thermal energy storage(TES)solutions offer opportunities to reduce energy consumption,greenhouse gas emissions,and cost.Specifically,they can help reduce the peak load and address the intermittency of renewable energy...Thermal energy storage(TES)solutions offer opportunities to reduce energy consumption,greenhouse gas emissions,and cost.Specifically,they can help reduce the peak load and address the intermittency of renewable energy sources by time shifting the load,which are critical toward zero energy buildings.Thermochemical materials(TCMs)as a class of TES undergo a solid-gas reversible chemical reaction with water vapor to store and release energy with high storage capacities(600 kWh m^(-3))and negligible self-discharge that makes them uniquely suited as compact,stand-alone units for daily or seasonal storage.However,TCMs suffer from instabilities at the material(salt particles)and reactor level(packed beds of salt),resulting in poor multi-cycle efficiency and high-levelized cost of storage.In this study,a model is developed to predict the pulverization limit or Rcrit of various salt hydrates during thermal cycling.This is critical as it provides design rules to make mechanically stable TCM composites as well as enables the use of more energy-efficient manufacturing process(solid-state mixing)to make the composites.The model is experimentally validated on multiple TCM salt hydrates with different water content,and effect of Rcrit on hydration and dehydration kinetics is also investigated.展开更多
基金funded by SINOPEC Science and Technology Project P18080by National Energy Administration Research and Development Center Project.
文摘An accurate mapping and understanding of remaining oil distribution is very important for water control and stabilize oil production of mature oilfields in ultra-high water-cut stage.Currently,the Tuo-21 Fault Block of the Shengtuo Oilfield has entered the stage of ultra-high water cut(97.2%).Poor adaptability of the well pattern,ineffective water injection cycle and low efficiency of engineering measures(such as workover,re-perforation and utilization of high-capacity pumps)are the significant problems in the ultra-high water-cut reservoir.In order to accurately describe the oil and water flow characteristics,relative permeability curves at high water injection multiple(injected pore volume)and a semiquantitative method is applied to perform fine reservoir simulation of the Sand group 3e7 in the Block.An accurate reservoir model is built and history matching is performed.The distribution characteristics of remaining oil in lateral and vertical directions are quantitatively simulated and analyzed.The results show that the numerical simulation considering relative permeability at high injection multiple can reflect truly the remaining oil distribution characteristics after water flooding in an ultrahigh water-cut stage.The distribution of remaining oil saturation can be mapped more accurately and quantitatively by using the‘four-points and five-types’classification method,providing a basis for potential tapping of various remaining oil types of oil reservoirs in late-stage of development with high water-cut.
基金The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China(Nos.12072212 and 11832007)the National Key Research and Development Program of China(No.2018YFE0307104)the Applied Basic Research Programs of Sichuan Province(No.2021YJ0071).We also highly appreciate the help of Dr.Yan Li from the Department of Mechanics,Sichuan University.
文摘Magnesium alloys with a long-period stacking ordered(LPSO)structure usually possess excellent static strength,but their fatigue behaviors are poorly understood.This work presents the effect of the LPSO structure on the crack behaviors of Mg alloys in a very high cycle fatigue(VHCF)regime.The LPSO lamellas lead to a facet-like cracking process along the basal planes at the crack initiation site and strongly prohibit the early crack propagation by deflecting the growth direction.The stress intensity factor at the periphery of the faceted area is much higher than the conventional LPSO-free Mg alloys,contributing higher fatigue crack propagation threshold of LPSO-containing Mg alloys.Microstructure observation at the facets reveals a layer of ultrafine grains at the fracture surface due to the cyclic contact of the crack surface,which supports the numerous cyclic pressing model describing the VHCF crack initiation behavior.
基金supported by the National Key Fundamental Research and Development Program of China (No.2004CB619105)
文摘The ultra-high cycle fatigue behavior of a novel high strength steel with carbide-free bainite/martensite (CFB/M) complex microstructure was studied. The ultra-high cycle fatigue properties were measured by ultrasonic fatigue testing equipment at a frequency of 20 kHz. It is found that there is no horizontal part in the S-N curve and fatigue fracture occurs when the life of specimens exceeds 10^7 cycles. In addition, the origination of fatigue cracks tends to transfer from the surface to interior of specimens as the fatigue cycle exceeds 10^7, and the fatigue crack originations of many specimens are not induced by inclusions, but by some kind of "soft structure". It is shown that the studied high strength steel performs good ultra-high cycle fatigue properties. The ultra-high fatigue mechanism was discussed and it is suggested that specific CFB/M complex microstructure of the studied steel contributes to its superior properties.
基金supported by the National Natural Science Foundation of China(10925211)the Program for Changjiang Scholars and Innovative Research Team (IRT1027)
文摘The fatigue life of numerous aerospace,locomotive,automotive and biomedical structures may go beyond 10~8 cycles.Determination of long life fatigue behavior becomes extremely important for better understanding and design of the components and structures.Initially,before the invention of ultrasonic fatigue testing,most of the engineering materials were supposed to exhibit fatigue life up to 10~7 cycles or less.This paper reviews current understanding of some fundamental aspects on the development of accelerated fatigue testing method and its application in ultra-high cycle fatigue,crack initiation and growth mechanisms of internal fracture,S-N diagram,fatigue limit and life prediction, etc.
文摘The second generation single crystal superalloy DD6 with 0.10%Hf and 0.34%Hf (in mass fraction) was subjected to high-cycle fatigue (HCF) loading at temperatures of 700 ℃ in ambient atmosphere. SEM was used to determine the initiation site and the failure mechanism. Evolution of the microstructure was investigated by TEM observation. The results show that fatigue limit of DD6 alloy with 0.34%Hf is a little smaller than that of the alloy with 0.10%Hf. The fatigue cracks initiated on the surface or near the surface of the specimens. The crack would propagate along { 111 } octahedral slip planes, rather than perpendicular to the loading axis of specimen. Typical fatigue striation formed in steady propagation of fatigue crack. The fracture mechanisms of the high cycle fatigue of DD6 alloys with 0.10%Hf and 0.34%Hf are quasi-cleavage fracture. Different types of dislocation structures were developed during high cycle fatigue deformation.
基金financially supported by the State Key Laboratory for Advanced Metallurgy Foundation (No.41614014)the National Natural Science Foundation of China (No.51774031)
文摘This work aims to investigate the effect of main inclusions on crack initiation in bearing steel in the very high cycle fatigue(VHCF) regime. The size and type of inclusions in the steel were quantitatively analyzed, and VHCF tests were performed. Some fatigue cracks were found to be initiated in the gaps between inclusions(Al2 O3, Mg O-Al2 O3) and the matrix, while other cracks originated from the interior of inclusions(Ti N, Mn S). To explain the related mechanism, the tessellated stresses between inclusions and the matrix were calculated and compared with the yield stress of the matrix. Results revealed that the inclusions could be classified into two types under VHCF; of these two, only one type could be regarded as holes. Findings in this research provide a better understanding of how inclusions affect the high cycle fatigue properties of bearing steel.
基金Funded by National Key Research and Development Program of China(No.2017YFB0310000)Opening Project of State Key Laboratory of Green Building Materials(No.YA-584)the Key Technology Innovation Program from the Ministry of Science and Technology(Hubei Province)(No.2018AAA004)
文摘The internal curing effect of superabsorbent polymer(SAP) on the properties of high performance concrete(HPC) under marine wetting and drying cycles(WD cycles) was investigated. Compressive strength, hydration and chloride migration were experimentally investigated and the results were evaluated by compasison with those under fresh water curing(FW). Water absorption and porosity were also evaluated only under WD cycles. The results showed the important influence of wetting and drying cycles on the properties of SAP modified HPC properties. Carefully designed, SAP minimized the long-term compressive strength of HPC under marine WD cycles. The hydration rate was faster in the initial curing, but became lower as compared with that cured in FW. In addition, SAP improved the long-term water absorption resistance and chloride migration resistance of HPC under marine WD cycles. The examination of the porosity showed a lower increase of the volume of capillary pores in SAP modified HPC under long term WD cycles compared with that without SAP. Therefore, internal curing by SAP could improve the durability properties of HPC under marine WD cycles.
基金Project(2007CB613606)supported by the National Basic Research Program of ChinaProjects(50734007,50974067)supported by the National Natural Science Foundation of China
文摘A greenness evaluation index and system of microwave-assisted leaching method were established.The effects of the life cycle assessment variables,such as the resource consumption,environment impact,cost,time and quality,were investigated,and the concept of green degree was applied in the production of synthetic rutile.An analytic hierarchy process was utilized to assess matrix of greenness evaluation.The Gauss-Seidel iterative matrix method was employed to solve the assessment matrix and obtain the weights and membership functions of all evaluation indexes.A fuzzy decision-making method was applied to build the greenness evaluation model,and then the scores of green degree in microwave-assisted leaching process was obtained.The greenness evaluation model was applied to the life cycle assessment of the microwave-assisted leaching process.The results show that the microwave-assisted leaching process has advantages over the conventional ones,with respect to energy-consumption,processing time and environmental protection.
文摘Friction stir welding (FSW) of 6061 aluminium alloy butt joint was carried out at each rotation speed of 600, 800, 1000, 1200 r/min for two different travel speeds, 80 and 100 mm/min, at a constant probe depth of 1.85 mm. The calculated energy input based on the FSW parameters studied shows that the ultimate tensile strength (UTS) of the butt joint is obtained within a certain range of energy input of 297 kJ to 354 kJ out of total range of energy input studied from 196 kJ to 405 kJ. The fatigue behaviors of high-strength and low-strength joints performed at different stress ratios, i.e., 0.5, 0.3, 0.1, -0.3, -0.5, indicate that the fatigue behaviors of both the welds are sensitive to the microstructural features, such as stir zone (SZ), thermo mechanically affected zone (TMAZ) and heat affected zone (HAZ). The observed fatigue strengths were discussed in terms of the microstructure, crack path behavior and fracture surface.
基金supported by the National Natural Science Foundation of China(52022109 and 51834008)Beijing Municipal Natural Science Foundation(2202047)+1 种基金National Key Research and Development Program of China(2021YFC2901100)Science Foundation of China University of Petroleum,Beijing(2462021QNX2010,2462020YXZZ019,2462020YXZZ016,and 2462022QZDX008)。
文摘The poor structural stability and capacity retention of the high-voltage spinel-type LiNi_(0.5)Mn_(1.5)O_(4)(LNMO)limits their further application.Herein,Al and Co were doped in LNMO materials for a more stable structure and capacity.The LNMO,LiNi_(0.45)Al_(0.05)Mn_(1.5)O_(4)(LNAMO)and LiNi_(0.45)Co_(0.05)Mn_(1.5)O_(4)(LNCMO)were synthesized by calcination at 900℃ for 8 h,which was called as solid-phase method and applied universally in industry.XRD,FT-IR and CV test results showed the synthesized samples have cation disordering Fd-3m space group structures.Moreover,the incorporation of Al and Co increased the cation disordering of LNMO,thereby increasing the transfer rate of Li+.The SEM results showed that the doped samples performed more regular and ortho-octahedral.The EDS elemental analysis confirmed the uniform distribution of each metal element in the samples.Moreover,the doped samples showed better electrochemical properties than undoped LNMO.The LNAMO and LNCMO samples were discharged with specific capacities of 116.3 mA·h·g^(-1)and 122.8 mA·h·g^(-1)at 1 C charge/discharge rate with good capacity retention of 95.8% and 94.8% after 200 cycles at room temperature,respectively.The capacity fading phenomenon of the doped samples at 50℃ and 1 C rate was significantly improved.Further,cations doping also enhanced the rate performance,especially for the LNCMO,the discharge specific capacity of 117.9 mA·h·g^(-1)can be obtained at a rate of 5 C.
文摘The effect of hot-forging process was investigated on microstructural and mechanical properties of AZ31 B alloy and AZ31 B/1.5 vol.%Al2 O3 nanocomposite under static and cycling loading. The as-cast alloy and composite were firstly subjected to a homogenization heat treatment at 450 ℃ and then an open-die forging at 450 ℃. The results indicated that the presence of reinforcing particles led to grain refinement and improvement of dynamic recrystallization. The forging process was more effective to eliminate the porosity in the cast alloy workpiece. Microhardness of the forged composite was increased by up to 80% and 16%, in comparison with those of the cast and forged alloy samples, respectively. Ultimate tensile strength and maximum tensile strain of the composite were improved by up to 45% and 23%, compared with those of the forged alloy in similar regions. These enhancements were respectively 50% and 37% in the compression test. The composite exhibited a fatigue life improvement in the region with low applied strain;however, a degradation was observed in the high applied strain region. Unlike AZ31 B samples, tensile, compressive and high cycle fatigue behaviors of the composite showed less sensitivity to the applied strain, which can be attributed to the amount of porosity in the samples before and after the hot-forging.
基金Project(2007BAE51B05)supported by the National Key Technologies Research and Development Program of China
文摘The high cycle fatigue response of a high V-alloyed powder metallurgy tool steel (AISI 11) with different inclusion sizes was studied. Two materials of this grade at a similar hardness of about HRC 60 were subjected to axial loading fatigue tests, tensile tests and fracture toughness measurements to investigate their mechanical properties. Large inclusion above 70 ~rn is indicated to be responsible for the tensile fracture which happens before yielding. The fatigue strength obtained up to 107 cycles is found to decrease from approximately 1 538 MPa to 1000 MPa with the inclusion size increasing above 30 Izm. The internally induced crack initiation is mainly attributed to the surface compressive residual stress of 300-450 MPa. Fractographic evaluation demonstrates that the crack initiation and propagation controlling factors of the two materials are almost the same, indicating that the two factors would be insignificantly affected by the inclusion size level. Paris sizes of the two materials both show a tendency to decrease as the ratio of stress intensity factor of crack origin to factor of fish-eye increases. The investigation into the relationship between stress intensity factors and fatigue life of the two materials further indicates that the high cycle fatigue behavior of AISI 11 is controlled by crack propagation.
基金Funded by the National Natural Science Foundation of China(Nos.51375500,and 51375162)Scientific Research Project of Hunan Province Department of Education(No.17C0886)Open Funded Projects of Hunan Provincial Key Laboratory of Health Maintenance for Mechanical Equipment(No.201605)
文摘The hardness, the tensile and the high-cycle fatigue(HCF) performances of 7075 aluminum alloy were investigated under temper T651, solution treated at 380 ℃ for 0.5 h and aged at different temperatures(150, 170, 190 ℃) for 10 hours. The optimal microstructures and the fatigue fracture surfaces were observed. The results show that the hardness and the tensile performances are at their optimum at T651, but the fatigue life is the shortest. The hardness and the elongation are the lowest after solution treatment. With the aging temperature increasing(150-190 ℃), the HCF is improved. The crack is initiated from the impurity particles on the subsurface. Treated at 170 ℃,the area of the quasi-cleavage plane and the width of parallel serrated sections of the crack propagation are the largest. With increasing aging temperature, the dimple size of finally fracture surfaces becomes larger and the depth deeper.
基金supported by the China National Funds for Distinguished Young Scientists(10925211)the National Natural Science Foundation of China(50878174)
文摘Very high cycle fatigue(VHCF) behaviors of bridge steel(Q345) welded joints were investigated using an ultrasonic fatigue test system at room temperature with a stress ratio R = -1. The results show that the fatigue strength of welded joints is dropped by an average of 60% comparing to the base metal and the fatigue failure still occurred beyond 10~7 cycles.The fatigue fracture of welded joints in the low cycle regime generally occurred at the solder while at the heat-affected zone(HAZ) in the very high cycle regime.The fatigue fracture surface was analyzed with scanning electron microscopy(SEM),showing welding defects such as pore,micro-crack and inclusion were the main factors on decreasing the fatigue properties of welded joints.The effect of welding defects on the fatigue behaviors of welded joints was discussed in terms of experimental results and finite element simulations.
基金supported by the National Basic Research Program of China (Grant 2012CB937500)the National Natural Science Foundations of China (Grants 11172304 and 11202210)
文摘In this paper, ultrasonic (20 kHz) fatigue tests were performed on specimens of a high-strength steel in very high cycle fatigue (VHCF) regime. Experimental results showed that for most tested specimens failed in a VHCF regime, a fatigue crack originated from the interior of specimen with a fish-eye pattern, which contained a fine granular area (FGA) centered by an inclusion as the crack origin. Then, a two-parameter model is proposed to predict the fatigue life of high-strength steels with fish-eye mode failure in a VHCF regime, which takes into account the inclusion size and the FGA size. The model was verified by the data of present experiments and those in the literature. Furthermore, an analytic formula was obtained for estimating the equivalent crack growth rate within the FGA. The results also indicated that the stress intensity factor range at the front of the FGA varies within a small range, which is irrespective of stress amplitude and fatigue life.
基金supported by AREVA(France)the National Natural Science Foundation of China(51101107)
文摘Carbon-manganese steel is often applied in components of pipes in nuclear plant. Ultrasonic fatigue tests following low cycle fatigue (LCF) cycles damaged are used to study the strength of very high cycle fatigure (VHCF). The comparison of test results of simple VHCF and cumulative fatigue (LCF plus VHCF) shows that LCF load influences the following VHCF strength. Continuum damage mechanics model is extended to VHCF region.
基金supported by the National Natural Science Foundation of China(11172304 and 11021262)the National Basic Research Program of China (2012CB937500)
文摘A model is proposed to correlate the crack growth rate and stress ratio containing very high cycle fatigue regime.The model is verified by the experimental data in literature.Then a formula is derived for the effect of mean stress on fatigue strength,and it is used to estimate the fatigue strength of a bearing steel in very high cycle fatigue regime at different stress ratios.The estimated results are also compared with those by Goodman formula.
基金Jiangsu Key Lab of Biomass Energy and Material,Grant/Award Number:JSBEMS‐202101National Natural Science Foundation of China,Grant/Award Numbers:51902162,51902162+4 种基金National Key R&D Program of China,Grant/Award Number:2022YFB4201904Foundation of Jiangsu Key Lab of Biomass Energy and Material,Grant/Award Number:JSBEM‐S‐202101National Key R&D Program,Grant/Award Number:2022YFB4201904Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources,the International Innovation Center for Forest Chemicals and Materialsanjing Forestry University。
文摘Biomass‐derived carbon is a promising electrode material in energy storage devices.However,how to improve its low capacity and stability,and slow diffusion kinetics during lithium storage remains a challenge.In this research,we propose a“self‐assembly‐template”method to prepare B,N codoped porous carbon(BN‐C)with a nanosandwich structure and abundant pyridinic N‐B species.The nanosandwich structure can increase powder density and cycle stability by constructing a stable solid electrolyte interphase film,shortening the Li^(+)diffusion pathway,and accommodating volume expansion during repeated charging/discharging.The abundant pyridinic N‐B species can simultaneously promote the adsorption/desorption of Li^(+)/PF_(6)^(−)and reduce the diffusion barrier.The BN‐C electrode showed a high lithium‐ion storage capacity of above 1140 mAh g^(−1)at 0.05 A g^(−1)and superior stability(96.5%retained after 2000 cycles).Moreover,owing to the synergistic effect of the nanosandwich structure and pyridinic N‐B species,the assembled symmetrical BN‐C//BN‐C full cell shows a high energy density of 234.7Wh kg^(−1),high power density of 39.38 kW kg−1,and excellent cycling stability,superior to most of the other cells reported in the literature.As the density functional theory simulation demonstrated,pyridinic N‐B shows enhanced adsorption activity for Li^(+)and PF_(6)^(−),which promotes an increase in the capacity of the anode and cathode,respectively.Meanwhile,the relatively lower diffusion barrier of pyridinic N‐B promotes Li^(+)migration,resulting in good rate performance.Therefore,this study provides a new approach for the synergistic modulation of a nanostructure and an active site simultaneously to fabricate the carbon electrode material in energy storage devices.
基金Project supported bythe Key Technologies Fifteen R &D Programme (2001BA311A07-2) 985-Automotive Engineering ofJilin University
文摘The effect of addition of different concentrations of Ce on high-cycle fatigue behavior of die-cast magnesium alloy AZ91D was investigated. Mechanical fatigue tests were conducted at the stress ratio of R = 0.1, and fatigue strength was evaluated using up-and-down loading method. The results show that the grain size of AZ91D alloy is remarkably refined, and the amount of porosity decreases and evenly distributes with the addition of Ce. The fatigue strength of AZ91D alloy at room temperature increases from 96.7 up to 116.3 MPa ( 1% Ce) and 105.5 MPa (2 % Ce), respectively, at the number of cycles to failure, Nf = 1 × 10^7. The fatigue crack of AZ91D alloy initiates at porosities and inclusions, and propagates along grain boundaries. The fatigue striations on fractured surface appear with Ce addition. The fatigue fracture surface of test specimens shows mixed-fracture characteristics of quasi-cleavage and dimple.
基金supported by the Energy Efficiency and Renewable Energy,Building Technologies Program,of the US Department of Energy,under contract no.DE-AC02-05CH11231the support on the DSC/TGA 3+supported by the Office of Science,Office of Basic Energy Sciences,of the U.S.Department of Energy under Contract No.DE-AC02-05CH11231
文摘Thermal energy storage(TES)solutions offer opportunities to reduce energy consumption,greenhouse gas emissions,and cost.Specifically,they can help reduce the peak load and address the intermittency of renewable energy sources by time shifting the load,which are critical toward zero energy buildings.Thermochemical materials(TCMs)as a class of TES undergo a solid-gas reversible chemical reaction with water vapor to store and release energy with high storage capacities(600 kWh m^(-3))and negligible self-discharge that makes them uniquely suited as compact,stand-alone units for daily or seasonal storage.However,TCMs suffer from instabilities at the material(salt particles)and reactor level(packed beds of salt),resulting in poor multi-cycle efficiency and high-levelized cost of storage.In this study,a model is developed to predict the pulverization limit or Rcrit of various salt hydrates during thermal cycling.This is critical as it provides design rules to make mechanically stable TCM composites as well as enables the use of more energy-efficient manufacturing process(solid-state mixing)to make the composites.The model is experimentally validated on multiple TCM salt hydrates with different water content,and effect of Rcrit on hydration and dehydration kinetics is also investigated.