The disposal of filtered tailings in high dry stacks can induce particle breakage,changing the material's behaviour during the structure's lifetime.The grading changes influence material properties at the crit...The disposal of filtered tailings in high dry stacks can induce particle breakage,changing the material's behaviour during the structure's lifetime.The grading changes influence material properties at the critical state,and this is not mature for intermediate artificial soils(tailings)in a broad range of confining pressures.In this paper,it aims to describe the behaviour of iron ore tailings in a spectrum of confining pressures broader than the reported in previous studies.A series of consolidated drained(CD)triaxial tests was carried out with confining pressures ranging from 0.075 MPa to 120 MPa.These results show that the amount of breakage plays an essential role in the response of iron ore tailings.The existence of curved critical state line(CSL)in both specific volume(ν)-logarithm of mean effective stress(p′)and deviatoric stress(q)-mean effective stress(p′)planes,and different responses in the deviatoric stress-axial strain-volumetric strain curves were verified.An inverse S-shaped equation was proposed to represent the silty-sandy tailings'behaviour up to high pressures onν-lnp′plane.The proposed equation provides a basis for enhancing constitutive models and considers the evolution of the grading up to severe loading conditions.The adjustment considered three regions with different responses associated with particle breakage at different pressure levels.展开更多
The thermal decomposition kinetics of high iron gibbsite ore was investigated under non-isothermal conditions.Popescu method was applied to analyzing the thermal decomposition mechanism.The results show that the most ...The thermal decomposition kinetics of high iron gibbsite ore was investigated under non-isothermal conditions.Popescu method was applied to analyzing the thermal decomposition mechanism.The results show that the most probable thermal decomposition mechanism is the three-dimensional diffusion model of Jander equation,and the mechanism code is D3.The activation energy and pre-exponential factor for thermal decomposition of high iron gibbsite ore calculated by the Popescu method are 75.36 kJ/mol and 1.51×10-5 s-(-1),respectively.The correctness of the obtained mechanism function is validated by the activation energy acquired by the iso-conversional method.Popescu method is a rational and reliable method for the analysis of the thermal decomposition mechanism of high iron gibbsite ore.展开更多
The high-temperature performance of iron ore fmes is an important factor in optimizing ore blending in sintering. However, the application of linear regression analysis and the linear combination method in most other ...The high-temperature performance of iron ore fmes is an important factor in optimizing ore blending in sintering. However, the application of linear regression analysis and the linear combination method in most other studies always leads to a large deviation from the desired results. In this study, the fuzzy membership functions of the assimilation ability temperature and the liquid fluidity were proposed based on the fuzzy mathematics theory to construct a model for predicting the high-temperature performance of mixed iron ore. Comparisons of the prediction model and experimental results were presented. The results illustrate that the prediction model is more accurate and effective than previously developed models. In addition, fuzzy constraints for the high-temperature performance of iron ore in this research make the results of ore blending more comparable. A solution for the quantitative calculation as well as the programming of fuzzy constraints is also introduced.展开更多
The basic sintering characteristics of Yandi ore from Australia, including assimilation ability, liquid phase fluidity, self-strength of bonding phase, forming ability of silico ferrite of calcium and aluminum (SFCA...The basic sintering characteristics of Yandi ore from Australia, including assimilation ability, liquid phase fluidity, self-strength of bonding phase, forming ability of silico ferrite of calcium and aluminum (SFCA), and so on, were investigated in detail. Besides, the high temperature behavior and function of sintering were obtained. As a result, the techniques for ore-proportioning in sintering were obtained. The results show that Yandi ore possessing higher assimilation ability, better liquid phase fluidity, lower self-strength of bonding phase, and better forming ability of SFCA, should be mixed with iron ores whose properties are opposite to those of Yandi ore. In the optimization of sintering ore-proportioning, Yandi ore, whose price is relatively low, can be mixed as high as 40wt%.展开更多
Pelletization is one of useful processes for the agglomeration of iron ore or concentrates. However, manganese ore fines are mainly agglomerated by sintering due to its high combined water which adversely affects the ...Pelletization is one of useful processes for the agglomeration of iron ore or concentrates. However, manganese ore fines are mainly agglomerated by sintering due to its high combined water which adversely affects the roasting performance of pellets. In this work, high pressure roll grinding(HPRG) process and optimization of temperature elevation system were investigated to improve the strength of fired manganese ore pellets. It is shown that the manganese ore possesses good ballability after being pretreated by HPRG twice, and good green balls were produced under the conditions of blending 2.0% bentonite in the feed, balling for 7 min at 16.00% moisture. High quality roasted pellets with the compressive strength of 2711 N per pellet were manufactured through preheating at 1050 °C for 10 min and firing at 1335 °C for 15 min by controlling the cracks formation. The fired manganese pellets keep the strength by the solid interconnection of recrystallized pyrolusite grains and the binding of manganite liquid phase which filled the pores and clearance among minerals. The product pellets contain high Mn grade and low impurities, and can be used to smelt ferromanganese, which provides a possible way to use imported manganese ore fines containing high combined water to produce high value ferromanganese.展开更多
Successful recovery of limonite from iron fines was achieved by using flocculation-high intensity magnetic separation (FIMS) and adding hydrolyzed and causticized flocculants according to the characteristic of iron ...Successful recovery of limonite from iron fines was achieved by using flocculation-high intensity magnetic separation (FIMS) and adding hydrolyzed and causticized flocculants according to the characteristic of iron fines. The separation results of the three iron samples are as follows: iron grade 66.77%- 67.98% and the recovery of iron 69.26%-70.70% by the FIMS process with flocculants. The comparative results show that under the same separation conditions the F1MS process can effectively increase the recovery of iron by 10. 97%- 15.73%. The flowsheet results confirm the reliability of the process in a SHP high intensity magnetic separator. The concentrate product can he used as raw materials for direct reduction iron-smelting. The hydrolyzed and causticized flocculants can selectively flocculate fine feebly-magnetic iron mineral particles to increase their apparent separation sizes. The larger the separation size, the stronger the magnetic force. By comparing the separation results of the three samples it is found that among the three samples the higher the limonite content, the better the separation result. This means that the separation result relates closely to the flocculation process and the adding pattern of the flocculant.展开更多
In order to reasonably utilize the abundant resources of high-phosphorus iron ore and ilmenite in China, the technology of top-blown smelting reduction with oxygen enrichment was used to smelt the mixed ore of high-ph...In order to reasonably utilize the abundant resources of high-phosphorus iron ore and ilmenite in China, the technology of top-blown smelting reduction with oxygen enrichment was used to smelt the mixed ore of high-phosphorus iron and ilmenite. The effect, which is related to basicity, reduction temperature, carbon-oxygen ratio and time of ventilated oxygen to iron recovery, dephosphorization rate, content of iron, phosphorus, sulfur and titanium in pig iron, was investigated in the experiment. The results show that an ideal outcome can be gained in condition of 6:4 ration on Mengqiao concentrate and Huimin iron ore, temperature of 1 500℃, basicity of 1.3, 1.0 on molar ration of carbon to oxygen, time of 10 min on blowing-oxygen. The outcome is that there is no foamy slag in generation, a good separation of slag and iron, iron recovery with 91.41%, content of phosphorus with 0.27% and tilanium content less than 0.001%, The atmosphere of strong oxidizing in the upper of reduction container and high potential of oxygen in the composition of slag in this technique bring phosphorus, titanium and silicon into slag, which ensures less content of impurity in pig iron.展开更多
The influence of microwave treatment on the liberation of iron ore from the high phosphorus oolitic iron ore from Aswan region, Egypt was studied. The effect of microwave power, exposure time and grain size on the lib...The influence of microwave treatment on the liberation of iron ore from the high phosphorus oolitic iron ore from Aswan region, Egypt was studied. The effect of microwave power, exposure time and grain size on the liberation of iron ore was investigated. The microfractures and cracks of the samples were characterized before and after microwave treatments. The heating rate of high phosphorus oolitic iron ore was studied. Crystallinity of hematite was characterized before and after microwave pretreatment. The results indicated that intergranular fractures formed between the gangues (fluorapatite and chamosite) and hematite after microwave treatment, leading to improved liberation of iron ore and a significant reduction in comminution energy. Percentages of fraction ≤ -0.125 mm increased from 46.6% to 59.76% with increased exposure time from 0 to 60 seconds. The heating rate of iron ore showed that microwave treatment was less efficient at smaller particle sizes for a fixed applied power density. Crystallinity of hematite increased with the microwave exposure time.展开更多
Numerical simulation of the electrical field distribution helps in-depth understanding of the mechanisms behind the responses and the benefits of the high voltage pulse comminution. The COMSOL Multiphysics package was...Numerical simulation of the electrical field distribution helps in-depth understanding of the mechanisms behind the responses and the benefits of the high voltage pulse comminution. The COMSOL Multiphysics package was used to numerically simulate the effect of ore compositions in this study. Regarding phosphate ore particles shape and composition, the effects of mineral composition, particle size, particle shape and electrodes distance were investigated on the electrical field intensity and distribution. The results show that the induced electrical field is significantly dependent on the electrical properties of minerals,the feed particle size and the location of conductive minerals in ores. The angle of material contact surface with the discharge electrode is also an important factor in the intensity of electrical field. Moreover,it is found that the specific liberation effect at the disintegration of phosphate ore by electrical pulses is due to the locality of the electrical field at the interface of mineral components of the phosphate ore aggregates with different permittivities. However, the intensity of the electrical field increases with sharpening the contact angle. Besides, the electrical discharge in the samples is converted to the electrohydraulic discharge across the surrounding water by changing the distance between the discharge electrode and sample surface.展开更多
The effects of CaO and Na2CO3 on the reduction of high silicon iron ores at 1 250 ℃ were studied. The experimental results showed that the metallization rate was significantly hindered by the addition of CaO and Na2C...The effects of CaO and Na2CO3 on the reduction of high silicon iron ores at 1 250 ℃ were studied. The experimental results showed that the metallization rate was significantly hindered by the addition of CaO and Na2CO3, particularly at the early stage of roasting, compared to the rate without additives. In the absence of additives, iron oxides were quickly reduced to metallic iron, and fayalite was difficult to form. When CaO and Na2CO3 were added, the low reducible iron-containing silicate compounds formed and melted, subsequently retarding the metallization process. The inhibition of Na2CO3 was more noticeable than that of CaO, and higher Na2CO3 doses resulted in stronger inhibition of the increased metallization rate. However, when Na2CO3 was added prior to CaO, the liquid phase formed, which facilitated the growth of the metallic phase. To reinforce the separation of the metallic phase and slag, an appropriate amount of liquid phase generated during the reduction is necessary. It was shown that when 10% CaO and 10% Na2CO3 were added, a high metallization rate and larger metallic iron particles were obtained, thus further decreasing the required Na2CO3 dosage.展开更多
This work aims at studying the reactivity of Egyptian manganese ores to be used in the production of ferromanganese alloys in submerged electric arc furnace. Ores with different manganese content (high-medium and low)...This work aims at studying the reactivity of Egyptian manganese ores to be used in the production of ferromanganese alloys in submerged electric arc furnace. Ores with different manganese content (high-medium and low) were selected and characterized by X-Ray Fluorescence (XRF), X-Ray Diffraction (XRD) and Scanning Electron Microscope (SEM). The main mineralogical compositions in the three ores are pyrolusite (MnO2) and hematite (Fe2O3). Porosity of selected Mn ores was determined. The reactivity of the different ores was carried out through pre-reduction of the selected ores using thermobalance at 900°C and 1100°C and mixture of CO and CO2 gases. The reduction process was done until steady weight. The reduced ores were examined using XRD and SEM. The results showed that pyrolusite in high and medium ores are converted completely to MnO at 1100°C. However, the ore with low manganese content was converted to MnO and Mn3O4. Consequently, it is clear from the results that Mn ores with high and medium MnO2 content are more reactive than those with low MnO2. Therefore, high MnO2 content Mn ores are preferable to get good economic impact during the production of high carbon ferromanganese.展开更多
The strong global demand for iron and steel has necessitated the utilization of various low grade iron ores, which are not suitable for direct utilization in ironmaking processes. The low grade iron ores cannot be dre...The strong global demand for iron and steel has necessitated the utilization of various low grade iron ores, which are not suitable for direct utilization in ironmaking processes. The low grade iron ores cannot be dressed effectively using the traditional mineral processing methods because of complicated min-eral compositions. The main problem associated with exploiting these deposits is the dissemination of fine silicate minerals and the high level of phosphorus content due to the poor liberation of iron minerals from the gangues. The pre-sent manuscript is aimed to investigate reduction properties of iron ores rich in phosphorous in order to study the suitability of using these ores in iron blast furnace. Representative technological samples of iron ore are collected from Eastern South Aswan iron ore mine in Egypt. The principal gangue contents are SiO2 7.76%, and P2O5 1.13%. Iron and phosphorus exist in the form of hematite 78% and apatite respectively. The ore was fired at 1000°C for 3 hours. The green and fired samples were isothermally reduced at conditions which closely represent the theoretical reduction conditions in different zones of blast furnace. The influence of reduction conditions on the reduction behaviour and the morphology of the reduced samples were investigated. After reduction apatite is changed to Calcium phosphate beside fayalite and quartz. The reduction rate of fired samples is greater than that for the green ones and that was confirmed by morphological examination. At cohesive zone condition, the effect of firing on reduction characteristics cannot be distinguished.展开更多
Some high quality manganese ore deposits of Cbina are found to be polygenetic compound ore deposits which are the products of diwa mineralization. Liancheng manganese ore district, Fujian, is a typical example. Simila...Some high quality manganese ore deposits of Cbina are found to be polygenetic compound ore deposits which are the products of diwa mineralization. Liancheng manganese ore district, Fujian, is a typical example. Similar deposits can be found in East GuangdongWest Fujian and Hunan. The genesis of some ore deposits in Southeast Yunnan, for example,those in Deunan and Beixian,maybe related to diwa mineralization.Geological conditions of the mineralization of some high grade manganese ore deposits have been analysized and comPared with other comparatively poor manganese ore deposits.The genesis and perspective of higb quality mamganese ore deposits is discussed based on diwa theory.It is pointed out that South-East China diwa region,the South tip of South-North diwa region and some parts ofYunnan-Guizhou diwa region are more prospective for the reconnaissance geologicaI survey and exploration of high grade polygenetic compound weathering manganese and rhodochrosite-alabandite ore deposits in Cbina.展开更多
The effects of gas composition, temperature, ore to coke ratio and prereduction rate of ore on coke degradation were studied. The results showed that 1% increment in solution loss of coke reduces coke strength by 0.6%...The effects of gas composition, temperature, ore to coke ratio and prereduction rate of ore on coke degradation were studied. The results showed that 1% increment in solution loss of coke reduces coke strength by 0.6%, and the coke degradation is accelerated with the temperature. The higher the temperature, the more coke surface is involved in reactions, and the less negative effect on coke strength is. Hydrogen exerts stronger effect on coke degradation than CO at high temperature. The coke degradation is decreased with the reduction of ore to coke ratio and increase of ore prereduction rate.展开更多
The selective HCl leaching method was used to remove phosphorus from high phosphorus iron ores. The hydroxyapatite in high phosphorus iron ores was converted into soluble phosphate during the process of HCl leaching. ...The selective HCl leaching method was used to remove phosphorus from high phosphorus iron ores. The hydroxyapatite in high phosphorus iron ores was converted into soluble phosphate during the process of HCl leaching. The effects of reaction time,particle size,hydrochloric acid concentration,reaction temperature,liquid-solid ratio and stirring strength on the dephosphorization ratio were studied. The results showed that the dephosphorization ratio can exceed 98% under the conditions of reaction time 30-45 min,particle size 0.147 mm,hydrochloric acid concentration 2.5 mol/L,reaction temperature 25 ℃,liquid-solid ratio 5:1 and stirring strength 5.02-12.76 s-1. After dephosphorization reaction,the content of phosphorus in iron ore complied completely with the requirements of steel production.展开更多
A new method (gas-based separation plus melt separation) has been proposed to remove phosphorus of the high phosphorus iron ore which was 1.25 % of phosphorus content and 50. 0% of iron content. HSC chemistry packag...A new method (gas-based separation plus melt separation) has been proposed to remove phosphorus of the high phosphorus iron ore which was 1.25 % of phosphorus content and 50. 0% of iron content. HSC chemistry package and the coexistence theory of slag structure were adopted for theoretical analysis. The gas-based reduction was carried out using a fixed bed reactor and the ore sample of 80 g with an average particle size of 2 mm were reduced using CO or H2 at temperature of 1 073 K for 5 hours. 50 g of the reduced sample with 3.0% CaO as additive was then subjected to melt separation in an electric furnace at temperature of 1 873 K under Ar atmosphere. In each run, SEM, EDS, optical microscopic examination and chemical analysis of the reduced ore sample, the metal sample and the slag sample were conducted. Results of all gas-based reduction experiments showed that iron metallization ratios were some 65% and the phosphorus compounds in the ore remained unchanged. It was agreed well with the simula- tions except for the iron metallization rate being less than predicted value; this difference was attributed to kinetics. Results of melt separation experiments showed that P content in metal samples is 0.33% (metal sample from H2 reduction product) and 0.27% (metal sample from CO reduction product). The phosphorus partition ratios of both cases were less than predicted values. Some P in the metal samples existed as slag inclusion was considered to be the reason for this discrepancy.展开更多
Gaseous reduction kinetics of the high phosphorus iron ore fines from Hubei in China and effect of microwave pretreatment on the gaseous reduction behavior were studied. Gaseous reduction kinetics were investigated by...Gaseous reduction kinetics of the high phosphorus iron ore fines from Hubei in China and effect of microwave pretreatment on the gaseous reduction behavior were studied. Gaseous reduction kinetics were investigated by TG (Thermogravimetric) methods using LINSEIS STA PT 1600 thermal analysis equipment. Microwave pretreatments to the ore fines with four power levels were performed using a high temperature microwave reactor. Its effect was examined by TG methods and its mechanism was analyzed by SEM (scanning electron microscope) and EDS (energy dispersive spectrometer). Gaseous reduction tests were carried out using a tubular furnace. Results of kinetic study indicate that controlling step of the gaseous reduction of the ore fines is a mixing control of gas internal diffusion and interface chemical reaction when reduction fraction is less than 0.8 and is solid state diffusion when reduction fraction is more than 0.8. Microwave pretreatment of the ore fines could change the pore structure of the oolitic unit to generate cracks, fissures and loose zones, which promotes reduction in the early stage and delays the occurrence of sintering. Gaseous reduction tests show in the condition that the ore fines are pretreated with a microwave power of 450 W for 4 min and reduced under temperature of 1 273 K, the gaseous reduction of the ore fines could be apparently intensified. Using CO or H2 as a reductant and ore fines being reduced for 1.5 to 2 h , increase of metallization rate of the ore fines is 10% to 13%.展开更多
Since 2011,certain advances have been made through the resource investigation,metallogenesis research,mining supervision and environmental protection of ion-adsorption type rare earth element (REE) deposit in South Ch...Since 2011,certain advances have been made through the resource investigation,metallogenesis research,mining supervision and environmental protection of ion-adsorption type rare earth element (REE) deposit in South China.Firstly,some progress has been made in REE prospecting in Jiangxi,Guangdong,Guangxi and Yunnan.REE deposits are not only found within the weathering crusts of granites and felsic volcanic rocks,but also within the weathering crusts of epimetamorphic rocks and basic magmatic rocks.Secondly,the methods of exploration,delineating ore bodies and calculation of reserves have been improved,which intuitively reflect the thickness,REE composition and value of weathering crust.Thirdly,the relationship between REEs and weathering degree and the rule of distribution,migration and enrichment of REEs in the weathering profile was summarized through the analysis of big data,which can predict the metallogenetic horizon of REEs.Fourthly,a method for quick,accurate and dynamic investigation of the REE deposit has been established by using high resolution remote sensing technology.Finally,the relation between the production status of REE mines and water pollution has been revealed based on long-term hydrochemical monitoring data of rivers and wells in mines and surrounding areas.展开更多
Pilbara blending iron ore powder (PB powder) is blending ores with good and poor quality iron ores, so how to use PB power effectively is a problem. The self-characteristics of PB powder and its single-components we...Pilbara blending iron ore powder (PB powder) is blending ores with good and poor quality iron ores, so how to use PB power effectively is a problem. The self-characteristics of PB powder and its single-components were studied respectively such as the macroscopic properties, microscopic properties, and high-temperature properties the behavior and effect in the sintering were mastered. Then based on the new ore-proportioning idea of iron ores sintering characteristics complementary, the principles on the effective use of PB powder were discussed, and was fur ther validated through the sintering pot test and industrial production. The results show that PB powder is composed of three kinds of iron ore, and the sintering characteristics of different iron ores are obviously discrepant. With the ore-proportioning optimization based on the iron ores sintering characteristics complementary, the proportion of PB iron ore powder can be increased to more than 45 %.展开更多
Pyrite cinder and high sulfur magnetite were used as raw materials to produce iron ore pellets. Good quali ties of green balls and fired pellets were obtained from the feed comprising 50G pyrite cinder and 50% high su...Pyrite cinder and high sulfur magnetite were used as raw materials to produce iron ore pellets. Good quali ties of green balls and fired pellets were obtained from the feed comprising 50G pyrite cinder and 50% high sulfur magnetite concentrate at a small scale. Small scale tests were proven by pilot-scale tests. The high grade fired pel lets, assaying 63. 22% Fe, were analyzed, and the compressive strength of fired pellets was over 2 500 N/pellet. The fired pellets possessed excellent metallurgical performances, such as reducibility index higher than 67%, reduction swelling index lower than 15% and low temperature reduction degradation index (+ 3.15 mm) higher than 1%, which can be used as the hurden for blast furnace.展开更多
文摘The disposal of filtered tailings in high dry stacks can induce particle breakage,changing the material's behaviour during the structure's lifetime.The grading changes influence material properties at the critical state,and this is not mature for intermediate artificial soils(tailings)in a broad range of confining pressures.In this paper,it aims to describe the behaviour of iron ore tailings in a spectrum of confining pressures broader than the reported in previous studies.A series of consolidated drained(CD)triaxial tests was carried out with confining pressures ranging from 0.075 MPa to 120 MPa.These results show that the amount of breakage plays an essential role in the response of iron ore tailings.The existence of curved critical state line(CSL)in both specific volume(ν)-logarithm of mean effective stress(p′)and deviatoric stress(q)-mean effective stress(p′)planes,and different responses in the deviatoric stress-axial strain-volumetric strain curves were verified.An inverse S-shaped equation was proposed to represent the silty-sandy tailings'behaviour up to high pressures onν-lnp′plane.The proposed equation provides a basis for enhancing constitutive models and considers the evolution of the grading up to severe loading conditions.The adjustment considered three regions with different responses associated with particle breakage at different pressure levels.
基金Project(51374058)supported by the National Natural Science Foundation of China
文摘The thermal decomposition kinetics of high iron gibbsite ore was investigated under non-isothermal conditions.Popescu method was applied to analyzing the thermal decomposition mechanism.The results show that the most probable thermal decomposition mechanism is the three-dimensional diffusion model of Jander equation,and the mechanism code is D3.The activation energy and pre-exponential factor for thermal decomposition of high iron gibbsite ore calculated by the Popescu method are 75.36 kJ/mol and 1.51×10-5 s-(-1),respectively.The correctness of the obtained mechanism function is validated by the activation energy acquired by the iso-conversional method.Popescu method is a rational and reliable method for the analysis of the thermal decomposition mechanism of high iron gibbsite ore.
基金financially supported by the National Natural Science Foundation of China (No. 51204013)the National Key Technology R&D Program in the 12th Five Year Plan of China (No. 2011BAC01B02)
文摘The high-temperature performance of iron ore fmes is an important factor in optimizing ore blending in sintering. However, the application of linear regression analysis and the linear combination method in most other studies always leads to a large deviation from the desired results. In this study, the fuzzy membership functions of the assimilation ability temperature and the liquid fluidity were proposed based on the fuzzy mathematics theory to construct a model for predicting the high-temperature performance of mixed iron ore. Comparisons of the prediction model and experimental results were presented. The results illustrate that the prediction model is more accurate and effective than previously developed models. In addition, fuzzy constraints for the high-temperature performance of iron ore in this research make the results of ore blending more comparable. A solution for the quantitative calculation as well as the programming of fuzzy constraints is also introduced.
文摘The basic sintering characteristics of Yandi ore from Australia, including assimilation ability, liquid phase fluidity, self-strength of bonding phase, forming ability of silico ferrite of calcium and aluminum (SFCA), and so on, were investigated in detail. Besides, the high temperature behavior and function of sintering were obtained. As a result, the techniques for ore-proportioning in sintering were obtained. The results show that Yandi ore possessing higher assimilation ability, better liquid phase fluidity, lower self-strength of bonding phase, and better forming ability of SFCA, should be mixed with iron ores whose properties are opposite to those of Yandi ore. In the optimization of sintering ore-proportioning, Yandi ore, whose price is relatively low, can be mixed as high as 40wt%.
基金Project(2011GH561685)supported by the China Torch Program
文摘Pelletization is one of useful processes for the agglomeration of iron ore or concentrates. However, manganese ore fines are mainly agglomerated by sintering due to its high combined water which adversely affects the roasting performance of pellets. In this work, high pressure roll grinding(HPRG) process and optimization of temperature elevation system were investigated to improve the strength of fired manganese ore pellets. It is shown that the manganese ore possesses good ballability after being pretreated by HPRG twice, and good green balls were produced under the conditions of blending 2.0% bentonite in the feed, balling for 7 min at 16.00% moisture. High quality roasted pellets with the compressive strength of 2711 N per pellet were manufactured through preheating at 1050 °C for 10 min and firing at 1335 °C for 15 min by controlling the cracks formation. The fired manganese pellets keep the strength by the solid interconnection of recrystallized pyrolusite grains and the binding of manganite liquid phase which filled the pores and clearance among minerals. The product pellets contain high Mn grade and low impurities, and can be used to smelt ferromanganese, which provides a possible way to use imported manganese ore fines containing high combined water to produce high value ferromanganese.
文摘Successful recovery of limonite from iron fines was achieved by using flocculation-high intensity magnetic separation (FIMS) and adding hydrolyzed and causticized flocculants according to the characteristic of iron fines. The separation results of the three iron samples are as follows: iron grade 66.77%- 67.98% and the recovery of iron 69.26%-70.70% by the FIMS process with flocculants. The comparative results show that under the same separation conditions the F1MS process can effectively increase the recovery of iron by 10. 97%- 15.73%. The flowsheet results confirm the reliability of the process in a SHP high intensity magnetic separator. The concentrate product can he used as raw materials for direct reduction iron-smelting. The hydrolyzed and causticized flocculants can selectively flocculate fine feebly-magnetic iron mineral particles to increase their apparent separation sizes. The larger the separation size, the stronger the magnetic force. By comparing the separation results of the three samples it is found that among the three samples the higher the limonite content, the better the separation result. This means that the separation result relates closely to the flocculation process and the adding pattern of the flocculant.
基金Project(51064015) supported by the National Natural Science Foundation of ChinaProject(ZD2010001) supported by the Key Project of Yunnan Province Education of China
文摘In order to reasonably utilize the abundant resources of high-phosphorus iron ore and ilmenite in China, the technology of top-blown smelting reduction with oxygen enrichment was used to smelt the mixed ore of high-phosphorus iron and ilmenite. The effect, which is related to basicity, reduction temperature, carbon-oxygen ratio and time of ventilated oxygen to iron recovery, dephosphorization rate, content of iron, phosphorus, sulfur and titanium in pig iron, was investigated in the experiment. The results show that an ideal outcome can be gained in condition of 6:4 ration on Mengqiao concentrate and Huimin iron ore, temperature of 1 500℃, basicity of 1.3, 1.0 on molar ration of carbon to oxygen, time of 10 min on blowing-oxygen. The outcome is that there is no foamy slag in generation, a good separation of slag and iron, iron recovery with 91.41%, content of phosphorus with 0.27% and tilanium content less than 0.001%, The atmosphere of strong oxidizing in the upper of reduction container and high potential of oxygen in the composition of slag in this technique bring phosphorus, titanium and silicon into slag, which ensures less content of impurity in pig iron.
文摘The influence of microwave treatment on the liberation of iron ore from the high phosphorus oolitic iron ore from Aswan region, Egypt was studied. The effect of microwave power, exposure time and grain size on the liberation of iron ore was investigated. The microfractures and cracks of the samples were characterized before and after microwave treatments. The heating rate of high phosphorus oolitic iron ore was studied. Crystallinity of hematite was characterized before and after microwave pretreatment. The results indicated that intergranular fractures formed between the gangues (fluorapatite and chamosite) and hematite after microwave treatment, leading to improved liberation of iron ore and a significant reduction in comminution energy. Percentages of fraction ≤ -0.125 mm increased from 46.6% to 59.76% with increased exposure time from 0 to 60 seconds. The heating rate of iron ore showed that microwave treatment was less efficient at smaller particle sizes for a fixed applied power density. Crystallinity of hematite increased with the microwave exposure time.
文摘Numerical simulation of the electrical field distribution helps in-depth understanding of the mechanisms behind the responses and the benefits of the high voltage pulse comminution. The COMSOL Multiphysics package was used to numerically simulate the effect of ore compositions in this study. Regarding phosphate ore particles shape and composition, the effects of mineral composition, particle size, particle shape and electrodes distance were investigated on the electrical field intensity and distribution. The results show that the induced electrical field is significantly dependent on the electrical properties of minerals,the feed particle size and the location of conductive minerals in ores. The angle of material contact surface with the discharge electrode is also an important factor in the intensity of electrical field. Moreover,it is found that the specific liberation effect at the disintegration of phosphate ore by electrical pulses is due to the locality of the electrical field at the interface of mineral components of the phosphate ore aggregates with different permittivities. However, the intensity of the electrical field increases with sharpening the contact angle. Besides, the electrical discharge in the samples is converted to the electrohydraulic discharge across the surrounding water by changing the distance between the discharge electrode and sample surface.
基金Funded by the National High-tech Research and Development Program of China(No.2012AA062401)
文摘The effects of CaO and Na2CO3 on the reduction of high silicon iron ores at 1 250 ℃ were studied. The experimental results showed that the metallization rate was significantly hindered by the addition of CaO and Na2CO3, particularly at the early stage of roasting, compared to the rate without additives. In the absence of additives, iron oxides were quickly reduced to metallic iron, and fayalite was difficult to form. When CaO and Na2CO3 were added, the low reducible iron-containing silicate compounds formed and melted, subsequently retarding the metallization process. The inhibition of Na2CO3 was more noticeable than that of CaO, and higher Na2CO3 doses resulted in stronger inhibition of the increased metallization rate. However, when Na2CO3 was added prior to CaO, the liquid phase formed, which facilitated the growth of the metallic phase. To reinforce the separation of the metallic phase and slag, an appropriate amount of liquid phase generated during the reduction is necessary. It was shown that when 10% CaO and 10% Na2CO3 were added, a high metallization rate and larger metallic iron particles were obtained, thus further decreasing the required Na2CO3 dosage.
文摘This work aims at studying the reactivity of Egyptian manganese ores to be used in the production of ferromanganese alloys in submerged electric arc furnace. Ores with different manganese content (high-medium and low) were selected and characterized by X-Ray Fluorescence (XRF), X-Ray Diffraction (XRD) and Scanning Electron Microscope (SEM). The main mineralogical compositions in the three ores are pyrolusite (MnO2) and hematite (Fe2O3). Porosity of selected Mn ores was determined. The reactivity of the different ores was carried out through pre-reduction of the selected ores using thermobalance at 900°C and 1100°C and mixture of CO and CO2 gases. The reduction process was done until steady weight. The reduced ores were examined using XRD and SEM. The results showed that pyrolusite in high and medium ores are converted completely to MnO at 1100°C. However, the ore with low manganese content was converted to MnO and Mn3O4. Consequently, it is clear from the results that Mn ores with high and medium MnO2 content are more reactive than those with low MnO2. Therefore, high MnO2 content Mn ores are preferable to get good economic impact during the production of high carbon ferromanganese.
文摘The strong global demand for iron and steel has necessitated the utilization of various low grade iron ores, which are not suitable for direct utilization in ironmaking processes. The low grade iron ores cannot be dressed effectively using the traditional mineral processing methods because of complicated min-eral compositions. The main problem associated with exploiting these deposits is the dissemination of fine silicate minerals and the high level of phosphorus content due to the poor liberation of iron minerals from the gangues. The pre-sent manuscript is aimed to investigate reduction properties of iron ores rich in phosphorous in order to study the suitability of using these ores in iron blast furnace. Representative technological samples of iron ore are collected from Eastern South Aswan iron ore mine in Egypt. The principal gangue contents are SiO2 7.76%, and P2O5 1.13%. Iron and phosphorus exist in the form of hematite 78% and apatite respectively. The ore was fired at 1000°C for 3 hours. The green and fired samples were isothermally reduced at conditions which closely represent the theoretical reduction conditions in different zones of blast furnace. The influence of reduction conditions on the reduction behaviour and the morphology of the reduced samples were investigated. After reduction apatite is changed to Calcium phosphate beside fayalite and quartz. The reduction rate of fired samples is greater than that for the green ones and that was confirmed by morphological examination. At cohesive zone condition, the effect of firing on reduction characteristics cannot be distinguished.
文摘Some high quality manganese ore deposits of Cbina are found to be polygenetic compound ore deposits which are the products of diwa mineralization. Liancheng manganese ore district, Fujian, is a typical example. Similar deposits can be found in East GuangdongWest Fujian and Hunan. The genesis of some ore deposits in Southeast Yunnan, for example,those in Deunan and Beixian,maybe related to diwa mineralization.Geological conditions of the mineralization of some high grade manganese ore deposits have been analysized and comPared with other comparatively poor manganese ore deposits.The genesis and perspective of higb quality mamganese ore deposits is discussed based on diwa theory.It is pointed out that South-East China diwa region,the South tip of South-North diwa region and some parts ofYunnan-Guizhou diwa region are more prospective for the reconnaissance geologicaI survey and exploration of high grade polygenetic compound weathering manganese and rhodochrosite-alabandite ore deposits in Cbina.
文摘The effects of gas composition, temperature, ore to coke ratio and prereduction rate of ore on coke degradation were studied. The results showed that 1% increment in solution loss of coke reduces coke strength by 0.6%, and the coke degradation is accelerated with the temperature. The higher the temperature, the more coke surface is involved in reactions, and the less negative effect on coke strength is. Hydrogen exerts stronger effect on coke degradation than CO at high temperature. The coke degradation is decreased with the reduction of ore to coke ratio and increase of ore prereduction rate.
基金Item Sponsored by Natural Science Foundation Project of CQ CSTC of China (2009BA7071)
文摘The selective HCl leaching method was used to remove phosphorus from high phosphorus iron ores. The hydroxyapatite in high phosphorus iron ores was converted into soluble phosphate during the process of HCl leaching. The effects of reaction time,particle size,hydrochloric acid concentration,reaction temperature,liquid-solid ratio and stirring strength on the dephosphorization ratio were studied. The results showed that the dephosphorization ratio can exceed 98% under the conditions of reaction time 30-45 min,particle size 0.147 mm,hydrochloric acid concentration 2.5 mol/L,reaction temperature 25 ℃,liquid-solid ratio 5:1 and stirring strength 5.02-12.76 s-1. After dephosphorization reaction,the content of phosphorus in iron ore complied completely with the requirements of steel production.
基金Sponsored by National Natural Science Foundation of China and Baosteel(50834007)
文摘A new method (gas-based separation plus melt separation) has been proposed to remove phosphorus of the high phosphorus iron ore which was 1.25 % of phosphorus content and 50. 0% of iron content. HSC chemistry package and the coexistence theory of slag structure were adopted for theoretical analysis. The gas-based reduction was carried out using a fixed bed reactor and the ore sample of 80 g with an average particle size of 2 mm were reduced using CO or H2 at temperature of 1 073 K for 5 hours. 50 g of the reduced sample with 3.0% CaO as additive was then subjected to melt separation in an electric furnace at temperature of 1 873 K under Ar atmosphere. In each run, SEM, EDS, optical microscopic examination and chemical analysis of the reduced ore sample, the metal sample and the slag sample were conducted. Results of all gas-based reduction experiments showed that iron metallization ratios were some 65% and the phosphorus compounds in the ore remained unchanged. It was agreed well with the simula- tions except for the iron metallization rate being less than predicted value; this difference was attributed to kinetics. Results of melt separation experiments showed that P content in metal samples is 0.33% (metal sample from H2 reduction product) and 0.27% (metal sample from CO reduction product). The phosphorus partition ratios of both cases were less than predicted values. Some P in the metal samples existed as slag inclusion was considered to be the reason for this discrepancy.
基金Sponsored by National Natural Science Foundation of China(51144010)
文摘Gaseous reduction kinetics of the high phosphorus iron ore fines from Hubei in China and effect of microwave pretreatment on the gaseous reduction behavior were studied. Gaseous reduction kinetics were investigated by TG (Thermogravimetric) methods using LINSEIS STA PT 1600 thermal analysis equipment. Microwave pretreatments to the ore fines with four power levels were performed using a high temperature microwave reactor. Its effect was examined by TG methods and its mechanism was analyzed by SEM (scanning electron microscope) and EDS (energy dispersive spectrometer). Gaseous reduction tests were carried out using a tubular furnace. Results of kinetic study indicate that controlling step of the gaseous reduction of the ore fines is a mixing control of gas internal diffusion and interface chemical reaction when reduction fraction is less than 0.8 and is solid state diffusion when reduction fraction is more than 0.8. Microwave pretreatment of the ore fines could change the pore structure of the oolitic unit to generate cracks, fissures and loose zones, which promotes reduction in the early stage and delays the occurrence of sintering. Gaseous reduction tests show in the condition that the ore fines are pretreated with a microwave power of 450 W for 4 min and reduced under temperature of 1 273 K, the gaseous reduction of the ore fines could be apparently intensified. Using CO or H2 as a reductant and ore fines being reduced for 1.5 to 2 h , increase of metallization rate of the ore fines is 10% to 13%.
文摘Since 2011,certain advances have been made through the resource investigation,metallogenesis research,mining supervision and environmental protection of ion-adsorption type rare earth element (REE) deposit in South China.Firstly,some progress has been made in REE prospecting in Jiangxi,Guangdong,Guangxi and Yunnan.REE deposits are not only found within the weathering crusts of granites and felsic volcanic rocks,but also within the weathering crusts of epimetamorphic rocks and basic magmatic rocks.Secondly,the methods of exploration,delineating ore bodies and calculation of reserves have been improved,which intuitively reflect the thickness,REE composition and value of weathering crust.Thirdly,the relationship between REEs and weathering degree and the rule of distribution,migration and enrichment of REEs in the weathering profile was summarized through the analysis of big data,which can predict the metallogenetic horizon of REEs.Fourthly,a method for quick,accurate and dynamic investigation of the REE deposit has been established by using high resolution remote sensing technology.Finally,the relation between the production status of REE mines and water pollution has been revealed based on long-term hydrochemical monitoring data of rivers and wells in mines and surrounding areas.
文摘Pilbara blending iron ore powder (PB powder) is blending ores with good and poor quality iron ores, so how to use PB power effectively is a problem. The self-characteristics of PB powder and its single-components were studied respectively such as the macroscopic properties, microscopic properties, and high-temperature properties the behavior and effect in the sintering were mastered. Then based on the new ore-proportioning idea of iron ores sintering characteristics complementary, the principles on the effective use of PB powder were discussed, and was fur ther validated through the sintering pot test and industrial production. The results show that PB powder is composed of three kinds of iron ore, and the sintering characteristics of different iron ores are obviously discrepant. With the ore-proportioning optimization based on the iron ores sintering characteristics complementary, the proportion of PB iron ore powder can be increased to more than 45 %.
基金Item Sponsored by Torch Program of Ministry of Science and Technology of China(2008FJ5008)
文摘Pyrite cinder and high sulfur magnetite were used as raw materials to produce iron ore pellets. Good quali ties of green balls and fired pellets were obtained from the feed comprising 50G pyrite cinder and 50% high sulfur magnetite concentrate at a small scale. Small scale tests were proven by pilot-scale tests. The high grade fired pel lets, assaying 63. 22% Fe, were analyzed, and the compressive strength of fired pellets was over 2 500 N/pellet. The fired pellets possessed excellent metallurgical performances, such as reducibility index higher than 67%, reduction swelling index lower than 15% and low temperature reduction degradation index (+ 3.15 mm) higher than 1%, which can be used as the hurden for blast furnace.