The reaction behaviours of A1203 and SiO2 in high alumina coal fly ash under various alkali hydrothermal conditions were studied. The means of XRD, XRF, FTIR and SEM were used to measure the mineral phase and morpholo...The reaction behaviours of A1203 and SiO2 in high alumina coal fly ash under various alkali hydrothermal conditions were studied. The means of XRD, XRF, FTIR and SEM were used to measure the mineral phase and morphology of the solid samples obtained by different alkali hydrothermal treatments as well as the leaching ratio of SiO2 to A1203 in alkali solution. The results showed that with the increase of the hydrothermal treating temperature from 75 to 160 ~C, phillipsite-Na, zeolite A, zeolite P, and hydroxysodalite were produced sequentially while the mullite and corundum phase still remained. Zeolite P was massively formed at low-alkali concentration and the hydroxysodalite was predominantly obtained at high-alkali concentration. By the dissolution of aluminosilicate glass and the formation of zeolites together, the leaching efficiency of SiO2 can reach 42.13% with the mass ratio of A1203/SIO2 up to 2.19:1.展开更多
Circulating fluidized bed (CFB) gasification has several advantages for the utilization of low rank coals. However, the carbon content of fly ash is usually very high, which greatly infuences the gasification effici...Circulating fluidized bed (CFB) gasification has several advantages for the utilization of low rank coals. However, the carbon content of fly ash is usually very high, which greatly infuences the gasification efficiency. The purpose of this research is to investigate the gasification reactivity of a high-sodium Zhundong (ZD) coal fly ash obtained from a pilot-scale 2.5 t/d CFB gasification system. The experiments were carried out in a thermogravimetric analyzer with steam as gasification agent, and fast pyrolyzed ZD char was also investigated as a reference sample. The results show that increasing temperature accelerates the gasification rate both for fly ash and ZD char. Fly ash has higher gasification rate at the initial gasification stage. On the contrary, ZD char has higher reaction rate even at higher carbon conversion stage. Via distributed activation energy model, the average activation energy of ZD char and fly ash is calculated to be 94.4 and 91.2 kJ/mol, respectively. The integrated model study reveals that the reaction order of ZD char is about 0.74, whereas the reaction order of fly ash decreases from 1 to 0.59 when temperature increases from 900 to 1050 ℃. The gasification reactivity of ZD coal fly ash is quite different with literature research on those fly ashes with rarely little catalytic elements in coal ashes. The interesting results are related with the unique properties of ZD coal fly ash and the transformation of sodium during gasification process.展开更多
The current research was investigated the mechanism of coal demineralization and the effect of leaching parameters on high ash coal and study the characterization of pre and post-treated coal. The two high ash Indian ...The current research was investigated the mechanism of coal demineralization and the effect of leaching parameters on high ash coal and study the characterization of pre and post-treated coal. The two high ash Indian coal selected from Mahanadi Coalfield Limited, Odisha, pulverized to 375, 230 and 180 gm particle size were undergone simultaneous acid and alkali treatment at a different concentration, temperature and time. The percent demineralization was increased with decrease the size of the particle and rises with leaching parameters. The investigation suggested 180 μm particle size offers efficient demineralization for both coals at 30% NaOH and 30% H2SO4 concentration. The alkali leaching leads to obtaining the demineralization 46% and 42% whereas acid treatment resulted in 34% and 32% of the original coal samples. The extent of demineralization was improved the calorific value of coal. Besides, the degree of demineralization was proved from the FTIR, XRF and FESEM-EDX analysis results. FTIR analysis result showed that the peak intensity of mineral band decreased by the leaching effect and the degree of demineralization was significantly obtained to large extent by the X-ray Fluorescence spectrometer; which elucidates major minerals removed from coal by the leaching effect of acid and alkali solution.展开更多
High-alkali species in coal are notorious for causing ash slagging and fouling incidents.In this paper,four high-alkali coals were individually subject to hydrothermal pretreatment(HTP),within a batch-type autoclave a...High-alkali species in coal are notorious for causing ash slagging and fouling incidents.In this paper,four high-alkali coals were individually subject to hydrothermal pretreatment(HTP),within a batch-type autoclave at 300 -C for 1 h,and the treated coals were analyzed,along with the oxygen-containing functional groups determined by Fourier transform infrared spectrometer(FT-IR).Then the alkali species and other components in the coal ash were quantified by X-ray fluorescence(XRF)for evaluating the ash slagging and fouling tendency.Apart from this,FactSage was adopted to simulate the occurrence and transformation of alkali species during coal thermal conversion ending at various temperatures.The findings indicate that the treated coals are superior to the parent ones in terms of certain remarkable changes via HTP.The moisture,oxygen and sulfur of the hydrothermally treated coals decline obviously,while the calorific value rises sharply.HTP could reduce the alkali species to less than 2%(%,by weight,equivalent to Na2O in dry ash),with a maximum removal ratio of 88.9%,lowering the ash slagging and fouling tendency.The proposed mechanism of HTP was that the alkali species in coal matrix became released due to the breakage of the coal functional groups and micropores during HTP.展开更多
Coal fly ash(FA),a valuable industrial solid residue generated from coal combustion,is composed of various metal oxides and has a high thermal stability.Given that the coal-based energy will continue to account for a ...Coal fly ash(FA),a valuable industrial solid residue generated from coal combustion,is composed of various metal oxides and has a high thermal stability.Given that the coal-based energy will continue to account for a significant portion of global electricity generation in the coming years,the lack of effective management strategies exacerbates the threat of FA wastes to the surrounding environment and human health.For a sustainable development,green and renewable hydrogen economy and CO_(2)capture efforts provide appealing opportunities to valorize FA as catalysts and/or sorbents due to their appealing physicochemical properties.Hydrogen applications along with carbon neutrality are potential strategies to mitigate climate change crisis,but high processing costs(catalysts/sorbents)are challenging to realize this purpose.In this context,the utilization of FA not only enhances industrial competitiveness(by reducing manufacturing costs),but also provides ecologically friendly approaches to minimizing this solid waste.This state-of-the-art review highlights a wide-ranging outlook on the valorization of FA as catalysts and sorbents for hydrogen-rich gas production via conventional/intensified processes(CO_(2)/H_(2)O reforming,ammonia decomposition,hydride hydrolysis).The fundamental physicochemical characterizations and hazards/utilization of FA,which significantly affect the FA's utilization in various fields,are first introduced.The influence of several factors(like FA types and catalysis/sorption operation conditions)on the activity performance of FA-based materials is then discussed in detail.This critical review aims to open the window to further innovative ideas regarding the application of different FA residues in other catalytic and sorption processes.展开更多
基金Project(2652014017) supported by the Fundamental Research Funds for the Central Universities,China
文摘The reaction behaviours of A1203 and SiO2 in high alumina coal fly ash under various alkali hydrothermal conditions were studied. The means of XRD, XRF, FTIR and SEM were used to measure the mineral phase and morphology of the solid samples obtained by different alkali hydrothermal treatments as well as the leaching ratio of SiO2 to A1203 in alkali solution. The results showed that with the increase of the hydrothermal treating temperature from 75 to 160 ~C, phillipsite-Na, zeolite A, zeolite P, and hydroxysodalite were produced sequentially while the mullite and corundum phase still remained. Zeolite P was massively formed at low-alkali concentration and the hydroxysodalite was predominantly obtained at high-alkali concentration. By the dissolution of aluminosilicate glass and the formation of zeolites together, the leaching efficiency of SiO2 can reach 42.13% with the mass ratio of A1203/SIO2 up to 2.19:1.
基金Acknowledgements This work was financially supported by the National Key R&D Program of China (No. 2017YFB0602302) and the National Natural Science Foundation of China (No. 21306193).
文摘Circulating fluidized bed (CFB) gasification has several advantages for the utilization of low rank coals. However, the carbon content of fly ash is usually very high, which greatly infuences the gasification efficiency. The purpose of this research is to investigate the gasification reactivity of a high-sodium Zhundong (ZD) coal fly ash obtained from a pilot-scale 2.5 t/d CFB gasification system. The experiments were carried out in a thermogravimetric analyzer with steam as gasification agent, and fast pyrolyzed ZD char was also investigated as a reference sample. The results show that increasing temperature accelerates the gasification rate both for fly ash and ZD char. Fly ash has higher gasification rate at the initial gasification stage. On the contrary, ZD char has higher reaction rate even at higher carbon conversion stage. Via distributed activation energy model, the average activation energy of ZD char and fly ash is calculated to be 94.4 and 91.2 kJ/mol, respectively. The integrated model study reveals that the reaction order of ZD char is about 0.74, whereas the reaction order of fly ash decreases from 1 to 0.59 when temperature increases from 900 to 1050 ℃. The gasification reactivity of ZD coal fly ash is quite different with literature research on those fly ashes with rarely little catalytic elements in coal ashes. The interesting results are related with the unique properties of ZD coal fly ash and the transformation of sodium during gasification process.
文摘The current research was investigated the mechanism of coal demineralization and the effect of leaching parameters on high ash coal and study the characterization of pre and post-treated coal. The two high ash Indian coal selected from Mahanadi Coalfield Limited, Odisha, pulverized to 375, 230 and 180 gm particle size were undergone simultaneous acid and alkali treatment at a different concentration, temperature and time. The percent demineralization was increased with decrease the size of the particle and rises with leaching parameters. The investigation suggested 180 μm particle size offers efficient demineralization for both coals at 30% NaOH and 30% H2SO4 concentration. The alkali leaching leads to obtaining the demineralization 46% and 42% whereas acid treatment resulted in 34% and 32% of the original coal samples. The extent of demineralization was improved the calorific value of coal. Besides, the degree of demineralization was proved from the FTIR, XRF and FESEM-EDX analysis results. FTIR analysis result showed that the peak intensity of mineral band decreased by the leaching effect and the degree of demineralization was significantly obtained to large extent by the X-ray Fluorescence spectrometer; which elucidates major minerals removed from coal by the leaching effect of acid and alkali solution.
基金the National Key Basic Research Program of China (No. 2014CB238905)
文摘High-alkali species in coal are notorious for causing ash slagging and fouling incidents.In this paper,four high-alkali coals were individually subject to hydrothermal pretreatment(HTP),within a batch-type autoclave at 300 -C for 1 h,and the treated coals were analyzed,along with the oxygen-containing functional groups determined by Fourier transform infrared spectrometer(FT-IR).Then the alkali species and other components in the coal ash were quantified by X-ray fluorescence(XRF)for evaluating the ash slagging and fouling tendency.Apart from this,FactSage was adopted to simulate the occurrence and transformation of alkali species during coal thermal conversion ending at various temperatures.The findings indicate that the treated coals are superior to the parent ones in terms of certain remarkable changes via HTP.The moisture,oxygen and sulfur of the hydrothermally treated coals decline obviously,while the calorific value rises sharply.HTP could reduce the alkali species to less than 2%(%,by weight,equivalent to Na2O in dry ash),with a maximum removal ratio of 88.9%,lowering the ash slagging and fouling tendency.The proposed mechanism of HTP was that the alkali species in coal matrix became released due to the breakage of the coal functional groups and micropores during HTP.
基金supported by the Natural Sciences and Engineering Research Council of Canada(NSERC)the China Scholarship Council(CSC,201708130079)。
文摘Coal fly ash(FA),a valuable industrial solid residue generated from coal combustion,is composed of various metal oxides and has a high thermal stability.Given that the coal-based energy will continue to account for a significant portion of global electricity generation in the coming years,the lack of effective management strategies exacerbates the threat of FA wastes to the surrounding environment and human health.For a sustainable development,green and renewable hydrogen economy and CO_(2)capture efforts provide appealing opportunities to valorize FA as catalysts and/or sorbents due to their appealing physicochemical properties.Hydrogen applications along with carbon neutrality are potential strategies to mitigate climate change crisis,but high processing costs(catalysts/sorbents)are challenging to realize this purpose.In this context,the utilization of FA not only enhances industrial competitiveness(by reducing manufacturing costs),but also provides ecologically friendly approaches to minimizing this solid waste.This state-of-the-art review highlights a wide-ranging outlook on the valorization of FA as catalysts and sorbents for hydrogen-rich gas production via conventional/intensified processes(CO_(2)/H_(2)O reforming,ammonia decomposition,hydride hydrolysis).The fundamental physicochemical characterizations and hazards/utilization of FA,which significantly affect the FA's utilization in various fields,are first introduced.The influence of several factors(like FA types and catalysis/sorption operation conditions)on the activity performance of FA-based materials is then discussed in detail.This critical review aims to open the window to further innovative ideas regarding the application of different FA residues in other catalytic and sorption processes.