Liquid crystal(LC) compound with isothiocyanate and naphthyl group is an attractive high birefringence LC material,and can be used in optical devices. In this paper, the electro-optical properties of a series of thi...Liquid crystal(LC) compound with isothiocyanate and naphthyl group is an attractive high birefringence LC material,and can be used in optical devices. In this paper, the electro-optical properties of a series of this type of LC compounds were investigated. The melting points and enthalpy values of these LC compounds were higher than those of corresponding compounds with the phenyl group. These compounds exhibited high birefringence with a maximum value of 0.66. Fluorine substitution in the molecular almost does not affect the birefringence value. When these LC compounds with the naphthyl group were dissolved in a commercial LC mixture, the electro-optical properties depending on temperature were investigated. In the low-temperature region, LC mixtures with the naphthyl-group LC compounds exhibited higher viscosity than pure commercial LCs. In the high-temperature region, viscosity values very closely approached each other. When response performance was investigated, figure-of-merit(FoM) values were measured. The Fo M values of LC mixtures containing LC compounds with naphthyl group were lower than those of reference benzene LCs in the low-temperature region. However, in the high-temperature region, the results were reversed. These isothiocyanate LC compounds with naphthyl group can be applied in special fast-response LC device, particularly the ones used under high-temperature conditions.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61378075,61377032,11604327,and 61475152)the Science Foundation of State Key Laboratory of Applied Optics,China
文摘Liquid crystal(LC) compound with isothiocyanate and naphthyl group is an attractive high birefringence LC material,and can be used in optical devices. In this paper, the electro-optical properties of a series of this type of LC compounds were investigated. The melting points and enthalpy values of these LC compounds were higher than those of corresponding compounds with the phenyl group. These compounds exhibited high birefringence with a maximum value of 0.66. Fluorine substitution in the molecular almost does not affect the birefringence value. When these LC compounds with the naphthyl group were dissolved in a commercial LC mixture, the electro-optical properties depending on temperature were investigated. In the low-temperature region, LC mixtures with the naphthyl-group LC compounds exhibited higher viscosity than pure commercial LCs. In the high-temperature region, viscosity values very closely approached each other. When response performance was investigated, figure-of-merit(FoM) values were measured. The Fo M values of LC mixtures containing LC compounds with naphthyl group were lower than those of reference benzene LCs in the low-temperature region. However, in the high-temperature region, the results were reversed. These isothiocyanate LC compounds with naphthyl group can be applied in special fast-response LC device, particularly the ones used under high-temperature conditions.