Effect of boron on the microstructure and impact toughness in the coarse-grained heat-affected zone(CGHAZ)of two high strength low alloy steels,boron-free and boron-containing,was investigated by means of weld therm...Effect of boron on the microstructure and impact toughness in the coarse-grained heat-affected zone(CGHAZ)of two high strength low alloy steels,boron-free and boron-containing,was investigated by means of weld thermal simulation test.The result shows that,for the boron-free steel,a microstructure consisting of grain boundary ferrite degenerates pearlite and granular bainite for longer t8/5(the cooling time from 800 to 500 ℃),while lath bainite for shorter t8/5.For the boron-containing steel,granular bainite is dominant for a wide range of t8/5.Continuous cooling transformation(CCT)study on the CGHAZ indicates that the transformation start temperature decreases by about 50-100℃under different t8/5,for the boron-containing steel compared with the boron-free steel.The presence of boron suppresses the nucleation of ferrite at prior austenite grain boundaries and hence enlarges the range of t8/5for granular bainite transformation.However,the addition of boron deteriorates the impact toughness of CGHAZ,which may be due to a markedly increased fraction of martensite-austenite(M-A)constituents and decreased fraction of high angle grain boundaries.展开更多
文摘Effect of boron on the microstructure and impact toughness in the coarse-grained heat-affected zone(CGHAZ)of two high strength low alloy steels,boron-free and boron-containing,was investigated by means of weld thermal simulation test.The result shows that,for the boron-free steel,a microstructure consisting of grain boundary ferrite degenerates pearlite and granular bainite for longer t8/5(the cooling time from 800 to 500 ℃),while lath bainite for shorter t8/5.For the boron-containing steel,granular bainite is dominant for a wide range of t8/5.Continuous cooling transformation(CCT)study on the CGHAZ indicates that the transformation start temperature decreases by about 50-100℃under different t8/5,for the boron-containing steel compared with the boron-free steel.The presence of boron suppresses the nucleation of ferrite at prior austenite grain boundaries and hence enlarges the range of t8/5for granular bainite transformation.However,the addition of boron deteriorates the impact toughness of CGHAZ,which may be due to a markedly increased fraction of martensite-austenite(M-A)constituents and decreased fraction of high angle grain boundaries.