This work investigates durability of cement-free mortars with a binder comprised of ground granulated blast furnace slag (GGBFS) activated by high-calcium fly ash (HCFA) and sodium carbonate (Na<sub>2</sub>...This work investigates durability of cement-free mortars with a binder comprised of ground granulated blast furnace slag (GGBFS) activated by high-calcium fly ash (HCFA) and sodium carbonate (Na<sub>2</sub>CO<sub>3</sub>): the soundness, sulfate resistance, alkali-silica reactivity and efflorescence factors are considered. Results of tests show that such mortars are resistant to alkali-silica expansion. Mortars are also sulfate-resistant when the amount of HCFA in the complex binder is within a limit of 10 wt%. The fineness of fly ash determines its’ ability to activate GGBFS hydration, and influence soundness of the binder, early strength development, sulfate resistance and efflorescence behavior. The present article is a continuation of authors’ work, previously published in MSA, Vol. 14, 240-254.展开更多
In this paper, a high calcium high sulfate ash as the main material, adding fly ash, lime, cement, gypsum and some modifiers to prepare autoclaved aerated concrete. The products complies with the technical requirement...In this paper, a high calcium high sulfate ash as the main material, adding fly ash, lime, cement, gypsum and some modifiers to prepare autoclaved aerated concrete. The products complies with the technical requirements of GB/T11968-2006. This paper also studies the influence of the physical methods and water ratio on autoclaved aerated concrete by high calcium high sulfate ash aerated concrete. The best ratio of water and Grinding time were found in practice study.展开更多
The feasibility of high calcium fly ash (CFA)-based geopolymers to fix heavy metals were studied. The CFA-based geopolymers were prepared from CFA, flue gas desulfurization gypsum (FGDG), and water treatment resid...The feasibility of high calcium fly ash (CFA)-based geopolymers to fix heavy metals were studied. The CFA-based geopolymers were prepared from CFA, flue gas desulfurization gypsum (FGDG), and water treatment residual (WTR). The static leaching showed that heavy metals concentrations from CFA- based geopolymers were lower than their maximum concentration limits according to the U.S. environmental protection law. And the encapsulated and fixed ratios of heavy metals by the CFA-based geopolymers were 96.02%-99.88%. The dynamic real-time leaching experiment showed that concentration of Pb (II) was less than 1.μg / L, Cr (VI) less than 3.25 mg / L, while Hg (II) less than 4.0 μg / L. Additionally, dynamic accumulated leaching concentrations were increased at the beginning of leaching process then kept stable. During the dynamic leaching process, heavy metals migrated and accumulated in an area near to the solid-solution interface. When small part of heavy metals in "the accumulated area" breached through the threshold value of physical encapsulation and chemical fixation they migrated into solution. The dynamic leaching ratios and effective diffusion coefficients of heavy metals from CFA-based geopolymer were very low and the long-term security of heavy metals in CFA-based geopolymer was safe.展开更多
This study aimed at assessing the usefulness of carbon microfiber (CMF) in improving the compressive-toughness of sodium metasilicate-activated calcium aluminate/Class F fly ash foamed cement at hydrothermal temperatu...This study aimed at assessing the usefulness of carbon microfiber (CMF) in improving the compressive-toughness of sodium metasilicate-activated calcium aluminate/Class F fly ash foamed cement at hydrothermal temperatures of up to 300°C. When the CMFs came in contact with a pore solution of cement, their surfaces underwent alkali-caused oxidation, leading to the formation of metal (Na, Ca, Al)-complexed carboxylate groups. The extent of this oxidation was enhanced by the temperature increase, corresponding to the incorporation of more oxidation derivatives at higher temperatures. Although micro-probe examinations did not show any defects in the fibers, the enhanced oxidation engendered shrinkage of the interlayer spacing between the C-basal planes in CMFs, and a decline in their thermal stability. On the other hand, the complexed carboxylate groups present on the surfaces of oxidized fibers played a pivotal role in improving the adherence of fibers to the cement matrix. Such fiber/cement interfacial bonds contributed significantly to the excellent bridging effect of fibers, resistance to the cracks development and propagation, and to improvement of the post-crack material ductility. Consequently, the compressive toughness of the 85°-, 200°-, and 300°C-autoclaved foamed cements reinforced with 10 wt% CMF was 2.4-, 2.9-, and 3.1-fold higher than for cement without the reinforcement.展开更多
The paper describes an investigation into the volume change of cement mortar specimen at the three kinds of different curing schedules including 20℃and 5% Na2SO4 solution curing, tap water standard curing, 50% RH cur...The paper describes an investigation into the volume change of cement mortar specimen at the three kinds of different curing schedules including 20℃and 5% Na2SO4 solution curing, tap water standard curing, 50% RH curing for 90 days. The testing results of hydration heat, chemical shrinking and XRD prove that calcined phosphogypsum has evident excitation effect on the activity of high calcium ash and steel slag. Simultaneously, calcined phosphogypsum has the function of decreasing volume shrinkage to blended cement possessing steel slag and high calcium ash. In sulfate curing, calcined phosphogypsum can avoid the phenomenon of protrude apex of the blended cement.展开更多
Metal corrosion and ash deposition are two common issues in municipal solid waste incineration(MSWI)plants.An in-situ sampling investigation was conducted in an MSWI plant in Jiangsu,China.The deposit samples were col...Metal corrosion and ash deposition are two common issues in municipal solid waste incineration(MSWI)plants.An in-situ sampling investigation was conducted in an MSWI plant in Jiangsu,China.The deposit samples were collected from 6 convective heating surfaces including the reheaters,superheaters,and economizer.The corrosion samples were obtained from a ruptured tube cut from the tertiary superheater.The element composition,crystal phases,and morphology of deposit and corrosion samples were characterized and analyzed.The results show that S contents of these deposits are 32-45 wt%,considerable Cl(10.63 wt%)was only detected in the deposits of the tertiary superheater.The composition of the deposits varies with the location because the flue gas temperature determines the thermodynamic trend of the sulfation reactions of different chlorides and the SO_(2)equilibrium partial pressure required in these reactions.Ca sulfates mainly exist in deposits at high temperatures(above approximately 500℃).Whereas alkali metal sulfates are the main component of deposits at low temperatures(below approximately 500℃).A multi-layer structure is exhibited on the cross-section of the corrosion samples.The discovery of Cl in the interface between the matrix and the oxide layer confirms that Cl can penetrate the outer oxide film.Besides,polysulfate components were observed inside the metal oxide layers,which indicates that a melt has occurred there.This study has provided a better understanding of ash deposition and corrosion phenomena in MSWI systems and more emphasis should be placed on the research of ash deposition and corrosion mechanisms.展开更多
文摘This work investigates durability of cement-free mortars with a binder comprised of ground granulated blast furnace slag (GGBFS) activated by high-calcium fly ash (HCFA) and sodium carbonate (Na<sub>2</sub>CO<sub>3</sub>): the soundness, sulfate resistance, alkali-silica reactivity and efflorescence factors are considered. Results of tests show that such mortars are resistant to alkali-silica expansion. Mortars are also sulfate-resistant when the amount of HCFA in the complex binder is within a limit of 10 wt%. The fineness of fly ash determines its’ ability to activate GGBFS hydration, and influence soundness of the binder, early strength development, sulfate resistance and efflorescence behavior. The present article is a continuation of authors’ work, previously published in MSA, Vol. 14, 240-254.
文摘In this paper, a high calcium high sulfate ash as the main material, adding fly ash, lime, cement, gypsum and some modifiers to prepare autoclaved aerated concrete. The products complies with the technical requirements of GB/T11968-2006. This paper also studies the influence of the physical methods and water ratio on autoclaved aerated concrete by high calcium high sulfate ash aerated concrete. The best ratio of water and Grinding time were found in practice study.
基金Funded by the National Natural Science Foundation of China(Nos.51208370,51172164)the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20110072120046)
文摘The feasibility of high calcium fly ash (CFA)-based geopolymers to fix heavy metals were studied. The CFA-based geopolymers were prepared from CFA, flue gas desulfurization gypsum (FGDG), and water treatment residual (WTR). The static leaching showed that heavy metals concentrations from CFA- based geopolymers were lower than their maximum concentration limits according to the U.S. environmental protection law. And the encapsulated and fixed ratios of heavy metals by the CFA-based geopolymers were 96.02%-99.88%. The dynamic real-time leaching experiment showed that concentration of Pb (II) was less than 1.μg / L, Cr (VI) less than 3.25 mg / L, while Hg (II) less than 4.0 μg / L. Additionally, dynamic accumulated leaching concentrations were increased at the beginning of leaching process then kept stable. During the dynamic leaching process, heavy metals migrated and accumulated in an area near to the solid-solution interface. When small part of heavy metals in "the accumulated area" breached through the threshold value of physical encapsulation and chemical fixation they migrated into solution. The dynamic leaching ratios and effective diffusion coefficients of heavy metals from CFA-based geopolymer were very low and the long-term security of heavy metals in CFA-based geopolymer was safe.
文摘This study aimed at assessing the usefulness of carbon microfiber (CMF) in improving the compressive-toughness of sodium metasilicate-activated calcium aluminate/Class F fly ash foamed cement at hydrothermal temperatures of up to 300°C. When the CMFs came in contact with a pore solution of cement, their surfaces underwent alkali-caused oxidation, leading to the formation of metal (Na, Ca, Al)-complexed carboxylate groups. The extent of this oxidation was enhanced by the temperature increase, corresponding to the incorporation of more oxidation derivatives at higher temperatures. Although micro-probe examinations did not show any defects in the fibers, the enhanced oxidation engendered shrinkage of the interlayer spacing between the C-basal planes in CMFs, and a decline in their thermal stability. On the other hand, the complexed carboxylate groups present on the surfaces of oxidized fibers played a pivotal role in improving the adherence of fibers to the cement matrix. Such fiber/cement interfacial bonds contributed significantly to the excellent bridging effect of fibers, resistance to the cracks development and propagation, and to improvement of the post-crack material ductility. Consequently, the compressive toughness of the 85°-, 200°-, and 300°C-autoclaved foamed cements reinforced with 10 wt% CMF was 2.4-, 2.9-, and 3.1-fold higher than for cement without the reinforcement.
基金Funded by the National Hi-Tech Research and Development Program ("863" Project) of China (No. 2005AA332010)
文摘The paper describes an investigation into the volume change of cement mortar specimen at the three kinds of different curing schedules including 20℃and 5% Na2SO4 solution curing, tap water standard curing, 50% RH curing for 90 days. The testing results of hydration heat, chemical shrinking and XRD prove that calcined phosphogypsum has evident excitation effect on the activity of high calcium ash and steel slag. Simultaneously, calcined phosphogypsum has the function of decreasing volume shrinkage to blended cement possessing steel slag and high calcium ash. In sulfate curing, calcined phosphogypsum can avoid the phenomenon of protrude apex of the blended cement.
基金National Basic Research Program of China(973 Program),Grant No.2018YFC1901302Qunxing Huang,Innovative Research Group Project of the National Natural Science Foundation of China,Grant No.51621005,Xuguang Jiang.
文摘Metal corrosion and ash deposition are two common issues in municipal solid waste incineration(MSWI)plants.An in-situ sampling investigation was conducted in an MSWI plant in Jiangsu,China.The deposit samples were collected from 6 convective heating surfaces including the reheaters,superheaters,and economizer.The corrosion samples were obtained from a ruptured tube cut from the tertiary superheater.The element composition,crystal phases,and morphology of deposit and corrosion samples were characterized and analyzed.The results show that S contents of these deposits are 32-45 wt%,considerable Cl(10.63 wt%)was only detected in the deposits of the tertiary superheater.The composition of the deposits varies with the location because the flue gas temperature determines the thermodynamic trend of the sulfation reactions of different chlorides and the SO_(2)equilibrium partial pressure required in these reactions.Ca sulfates mainly exist in deposits at high temperatures(above approximately 500℃).Whereas alkali metal sulfates are the main component of deposits at low temperatures(below approximately 500℃).A multi-layer structure is exhibited on the cross-section of the corrosion samples.The discovery of Cl in the interface between the matrix and the oxide layer confirms that Cl can penetrate the outer oxide film.Besides,polysulfate components were observed inside the metal oxide layers,which indicates that a melt has occurred there.This study has provided a better understanding of ash deposition and corrosion phenomena in MSWI systems and more emphasis should be placed on the research of ash deposition and corrosion mechanisms.