Future battery advances and economies of scale will help scrub CO2emissions from transportation and the grid.Economical energy storage lets battery-powered electric vehicles replace internal combustion engines in the ...Future battery advances and economies of scale will help scrub CO2emissions from transportation and the grid.Economical energy storage lets battery-powered electric vehicles replace internal combustion engines in the transportation sector,which now accounts for the plurality of CO2emissions.For grid-scale applications,the benefits of adding storage are many and well documented[1–2].Beyond increased penetration of intermittent renewable energy generated from such as solar panels展开更多
As one of the next-generation energy-storage devices,Li-O_2 battery has become the main research direction for the academic researchers due to its characteristics of environmental friendship,relatively simple structur...As one of the next-generation energy-storage devices,Li-O_2 battery has become the main research direction for the academic researchers due to its characteristics of environmental friendship,relatively simple structures,high energy density of 3500Wh/kg and low cost.However,Li-O_2 battery cannot be commercialized on a large scale because of the challenging issues including high-efficient electrocatalysts,membranes,Li-based anode and so on.In this review,we focused on the recent development of electrocatalyst materials as cathodes for the non-aqueous Li-O_2 batteries which are relatively simpler than other Li-O_2 batteries' structures.Electrocatalysts were summarized including noble metals,nanocarbon materials,transition metals and their hybrids.We points out that the challenges of preparation high-efficient catalysts not only require high catalytic activity and conductivity,but also have novel nanoarchitectures with large interface and porous volume for LiO_x storage.Furthermore,the further investigation of reaction mechanism and advanced in situ analysis technologies are welcome in the coming work.展开更多
文摘Future battery advances and economies of scale will help scrub CO2emissions from transportation and the grid.Economical energy storage lets battery-powered electric vehicles replace internal combustion engines in the transportation sector,which now accounts for the plurality of CO2emissions.For grid-scale applications,the benefits of adding storage are many and well documented[1–2].Beyond increased penetration of intermittent renewable energy generated from such as solar panels
基金supported by the Natural Science Foundation of China(No.21303038)Scientific Research Foundation for the Returned Overseas Chinese Scholars+1 种基金State Education Ministry One Hundred,Talents Program of Anhui ProvinceOpen Funds of the State Key Laboratory of Rare Earth Resource Utilization(No.RERU2016004)
文摘As one of the next-generation energy-storage devices,Li-O_2 battery has become the main research direction for the academic researchers due to its characteristics of environmental friendship,relatively simple structures,high energy density of 3500Wh/kg and low cost.However,Li-O_2 battery cannot be commercialized on a large scale because of the challenging issues including high-efficient electrocatalysts,membranes,Li-based anode and so on.In this review,we focused on the recent development of electrocatalyst materials as cathodes for the non-aqueous Li-O_2 batteries which are relatively simpler than other Li-O_2 batteries' structures.Electrocatalysts were summarized including noble metals,nanocarbon materials,transition metals and their hybrids.We points out that the challenges of preparation high-efficient catalysts not only require high catalytic activity and conductivity,but also have novel nanoarchitectures with large interface and porous volume for LiO_x storage.Furthermore,the further investigation of reaction mechanism and advanced in situ analysis technologies are welcome in the coming work.