Secure and high-speed optical communications are of primary focus in information transmission.Although it is widely accepted that chaotic secure communication can provide superior physical layer security,it is challen...Secure and high-speed optical communications are of primary focus in information transmission.Although it is widely accepted that chaotic secure communication can provide superior physical layer security,it is challenging to meet the demand for high-speed increasing communication rate.We theoretically propose and experimentally demonstrate a conceptual paradigm for orbital angular momentum(OAM)configured chaotic laser(OAM-CCL)that allows access to high-security and massivecapacity optical communications.Combining 11 OAM modes and an all-optical feedback chaotic laser,we are able to theoretically empower a well-defined optical communication system with a total transmission capacity of 100 Gb∕s and a bit error rate below the forward error correction threshold 3.8×10^(-3).Furthermore,the OAM-CCL-based communication system is robust to 3D misalignment by resorting to appropriate mode spacing and beam waist.Finally,the conceptual paradigm of the OAM-CCL-based communication system is verified.In contrast to existing systems(traditional free-space optical communication or chaotic optical communication),the OAM-CCL-based communication system has threein-one characteristics of high security,massive capacity,and robustness.The findings demonstrate that this will promote the applicable settings of chaotic laser and provide an alternative promising route to guide high-security and massive-capacity optical communications.展开更多
In order to solve the problem of inter-vehicle communication (IVC) in vast and desolate areas such as the desert and the Gobi, two vehicle network models are proposed. One is based on satellite communication and the...In order to solve the problem of inter-vehicle communication (IVC) in vast and desolate areas such as the desert and the Gobi, two vehicle network models are proposed. One is based on satellite communication and the other is based on high altitude platform ( HAP ) communication. The system outline and networking modes of the two models are described. In the satellite communication based model, all the vehicles are equipped with vehicle-bone satellite communication on the move terminals and the communication signals between vehicles are forwarded by satellite. In the high altitude platform-based model, the HAPs are equipped with base station facilities to form aerial base stations, and vehicles can communicate with each other via common terrestrial mobile communication devices. Some key parameters such as path loss, link loss and system capacity are also computed. The analysis shows that both the two models can satisfy the requirement of IVC in the descriptive environment.展开更多
We propose a two-step quantum secure direct communication (QSDC) protocol with hyperentanglement in both the spatial-mode and the polarization degrees of freedom of photon pairs which can in principle be produced wi...We propose a two-step quantum secure direct communication (QSDC) protocol with hyperentanglement in both the spatial-mode and the polarization degrees of freedom of photon pairs which can in principle be produced with a beta barium borate crystal. The secret message can be encoded on the photon pairs with unitary operations in these two degrees of freedom independently. This QSDC protocol has a higher capacity than the original two-step QSDC protocol as each photon pair can carry 4 bits of information. Compared with the QSDC protocol based on hyperdense coding, this QSDC protocol has the immunity to Trojan horse attack strategies with the process for determining the number of the photons in each quantum signal as it is a one-way quantum communication protocol.展开更多
We propose a bidirectional quantum secure direct communication(QSDC) network protocol with the hyperentanglment in both the spatial-mode ad the polarization degrees of freedom of photon pairs which can in principle be...We propose a bidirectional quantum secure direct communication(QSDC) network protocol with the hyperentanglment in both the spatial-mode ad the polarization degrees of freedom of photon pairs which can in principle be produced with a beta barium borate crystal.The secret message can be encoded on the photon pairs with unitary operations in these two degrees of freedom independently.Compared with other QSDC network protocols,our QSDC network protocol has a higher capacity as each photon pair can carry 4 bits of information.Also,we discuss the security of our QSDC network protocol and its feasibility with current techniques.展开更多
This study proposes the first high-capacity quantum secure direct communication(QSDC) with two-photon six-qubit hyperentangled Bell states in two longitudinal momentum and polarization degrees of freedom(DOFs) of phot...This study proposes the first high-capacity quantum secure direct communication(QSDC) with two-photon six-qubit hyperentangled Bell states in two longitudinal momentum and polarization degrees of freedom(DOFs) of photon pairs, which can be generated using two 0.5 mm-thick type-I β barium borate crystal slabs aligned one behind the other and an eight-hole screen. The secret message can be independently encoded on the photon pairs with 64 unitary operations in all three DOFs. This protocol has a higher capacity than previous QSDC protocols because each photon pair can carry 6 bits of information, not just 2 or 4 bits.Our QSDC protocol decreases the influence of decoherence from environment noise by exploiting the decoy photons to check the security of the transmission of the first photon sequence. Compared with two-way QSDC protocols, our QSDC protocol is immune to an attack by an eavesdropper using Trojan horse attack strategies because it is a one-way quantum communication.The QSDC protocol has good applications in the future quantum communication because of all these features.展开更多
In recent years,the conventional degrees of freedom in frequency and time have been fully used.It is difficult to further improve the performance of communication systems with such degrees of freedom.Orbital angular m...In recent years,the conventional degrees of freedom in frequency and time have been fully used.It is difficult to further improve the performance of communication systems with such degrees of freedom.Orbital angular momentum(OAM),which provides a new degree of freedom for millimeter-wave(mmWave)wireless communication systems,has been recognized as a key enabling technique for future mobile communication networks.By combining OAM beams that have theoretically infinite and mutually orthogonal states with the generalized spatial modulation(GSM)strategy,a new OAM-GSM mmWave wireless communication system is designed in this paper.A bit error rate(BER)model of the OAM-GSM system is established based on channel flip precoding.The channel capacity,energy efficiency,and BER of the proposed OAM-GSM mmWave wireless communication system are simulated.Numerical results show that,compared with traditional GSM systems,the OAM-GSM system has more complex transmission and reception mechanisms but the channel capacity and maximum achievable energy efficiency are increased by 80%and 54%,respectively,and the BER drops by 91.5%.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.61927811,62035009,and 11974258)the Fundamental Research Program of Shanxi Province(Grant No.202103021224038)+3 种基金the Development Fund in Science and Technology of Shanxi Province(Grant No.YDZJSX2021A009)the Open Fund of State Key Laboratory of Applied Optics(Grant No.SKLAO2022001A09)the Science and Technology Foundation of Guizhou Province(Grant Nos.ZK[2021]031 and ZK[2023]049)the Program for Guangdong Introducing Innovative and Entrepreneurial Teams.
文摘Secure and high-speed optical communications are of primary focus in information transmission.Although it is widely accepted that chaotic secure communication can provide superior physical layer security,it is challenging to meet the demand for high-speed increasing communication rate.We theoretically propose and experimentally demonstrate a conceptual paradigm for orbital angular momentum(OAM)configured chaotic laser(OAM-CCL)that allows access to high-security and massivecapacity optical communications.Combining 11 OAM modes and an all-optical feedback chaotic laser,we are able to theoretically empower a well-defined optical communication system with a total transmission capacity of 100 Gb∕s and a bit error rate below the forward error correction threshold 3.8×10^(-3).Furthermore,the OAM-CCL-based communication system is robust to 3D misalignment by resorting to appropriate mode spacing and beam waist.Finally,the conceptual paradigm of the OAM-CCL-based communication system is verified.In contrast to existing systems(traditional free-space optical communication or chaotic optical communication),the OAM-CCL-based communication system has threein-one characteristics of high security,massive capacity,and robustness.The findings demonstrate that this will promote the applicable settings of chaotic laser and provide an alternative promising route to guide high-security and massive-capacity optical communications.
基金FThe National High Technology Research and Development Program of China (863 Program) (No. 2008AA01Z205)the Specialized Development Foundation for the Achievement Transformation of Jiangsu Province (No. BA2010023)+1 种基金the Natural Science Foundation of Hainan Province (No. 609008)Sanya University and Local Government Technological Cooperative Project (No. 2010YD29)
文摘In order to solve the problem of inter-vehicle communication (IVC) in vast and desolate areas such as the desert and the Gobi, two vehicle network models are proposed. One is based on satellite communication and the other is based on high altitude platform ( HAP ) communication. The system outline and networking modes of the two models are described. In the satellite communication based model, all the vehicles are equipped with vehicle-bone satellite communication on the move terminals and the communication signals between vehicles are forwarded by satellite. In the high altitude platform-based model, the HAPs are equipped with base station facilities to form aerial base stations, and vehicles can communicate with each other via common terrestrial mobile communication devices. Some key parameters such as path loss, link loss and system capacity are also computed. The analysis shows that both the two models can satisfy the requirement of IVC in the descriptive environment.
基金supported by the Natural Science Foundation of Jiangsu Provincial Universities, China (Grant No. 10KJB180004)
文摘We propose a two-step quantum secure direct communication (QSDC) protocol with hyperentanglement in both the spatial-mode and the polarization degrees of freedom of photon pairs which can in principle be produced with a beta barium borate crystal. The secret message can be encoded on the photon pairs with unitary operations in these two degrees of freedom independently. This QSDC protocol has a higher capacity than the original two-step QSDC protocol as each photon pair can carry 4 bits of information. Compared with the QSDC protocol based on hyperdense coding, this QSDC protocol has the immunity to Trojan horse attack strategies with the process for determining the number of the photons in each quantum signal as it is a one-way quantum communication protocol.
基金Supported by the Natural Science Foundation of Jiangsu Provincial Universities under Grant No.10KJB180004the National Natural Science Foundation of China under Grant No.11105075
文摘We propose a bidirectional quantum secure direct communication(QSDC) network protocol with the hyperentanglment in both the spatial-mode ad the polarization degrees of freedom of photon pairs which can in principle be produced with a beta barium borate crystal.The secret message can be encoded on the photon pairs with unitary operations in these two degrees of freedom independently.Compared with other QSDC network protocols,our QSDC network protocol has a higher capacity as each photon pair can carry 4 bits of information.Also,we discuss the security of our QSDC network protocol and its feasibility with current techniques.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11474027, 61675028, and 11674033)the Fundamental Research Funds for the Central Universities (Grant No. 2015KJJCA01)the National High Technology Research and Development Program of China(Grant No. 2013AA122902)
文摘This study proposes the first high-capacity quantum secure direct communication(QSDC) with two-photon six-qubit hyperentangled Bell states in two longitudinal momentum and polarization degrees of freedom(DOFs) of photon pairs, which can be generated using two 0.5 mm-thick type-I β barium borate crystal slabs aligned one behind the other and an eight-hole screen. The secret message can be independently encoded on the photon pairs with 64 unitary operations in all three DOFs. This protocol has a higher capacity than previous QSDC protocols because each photon pair can carry 6 bits of information, not just 2 or 4 bits.Our QSDC protocol decreases the influence of decoherence from environment noise by exploiting the decoy photons to check the security of the transmission of the first photon sequence. Compared with two-way QSDC protocols, our QSDC protocol is immune to an attack by an eavesdropper using Trojan horse attack strategies because it is a one-way quantum communication.The QSDC protocol has good applications in the future quantum communication because of all these features.
基金Project supported by the National Natural Science Foundation of China(No.U2001210)。
文摘In recent years,the conventional degrees of freedom in frequency and time have been fully used.It is difficult to further improve the performance of communication systems with such degrees of freedom.Orbital angular momentum(OAM),which provides a new degree of freedom for millimeter-wave(mmWave)wireless communication systems,has been recognized as a key enabling technique for future mobile communication networks.By combining OAM beams that have theoretically infinite and mutually orthogonal states with the generalized spatial modulation(GSM)strategy,a new OAM-GSM mmWave wireless communication system is designed in this paper.A bit error rate(BER)model of the OAM-GSM system is established based on channel flip precoding.The channel capacity,energy efficiency,and BER of the proposed OAM-GSM mmWave wireless communication system are simulated.Numerical results show that,compared with traditional GSM systems,the OAM-GSM system has more complex transmission and reception mechanisms but the channel capacity and maximum achievable energy efficiency are increased by 80%and 54%,respectively,and the BER drops by 91.5%.