Fibrous porous ceramics are attractive for use as thermal insulation materials.However,the intrinsic brit-tleness of rigid materials has remained challenging and severely restricts their applications.Here,we demonstra...Fibrous porous ceramics are attractive for use as thermal insulation materials.However,the intrinsic brit-tleness of rigid materials has remained challenging and severely restricts their applications.Here,we demonstrated a facile method for fabricating elastic fibrous porous ceramics(EFPCs)with high com-pressive strength and low thermal conductivity through ordinary press filtration and subsequent heat treatment.The quasi-layered structure and the well-bonded bridging fibers between layers are the key points for the elasticity of EFPCs.The advanced EFPCs exhibited low density(∼0.126 g cm^(−3)),high com-pressive stress(∼0.356 MPa),and low thermal conductivity(∼0.026 W m^(−1) K^(−1)).Compared with rigid porous fibrous materials,the EFPCs had deformability and excellent shape recovery.In contrast to flexible materials,the EFPCs possessed high compressive stress,thus endowing them with good resistance to de-formation.The emergence of this fascinating material may provide new insights for candidate materials in thermal insulation and other fields.展开更多
基金financially supported by the National Key Research and Development of China (No.2021YFB3400200)the National Natural Science Foundation of China (Nos.12090031 and 11602125)the Beijing Institute of Technology Research Fund Program for Young Scholars.
文摘Fibrous porous ceramics are attractive for use as thermal insulation materials.However,the intrinsic brit-tleness of rigid materials has remained challenging and severely restricts their applications.Here,we demonstrated a facile method for fabricating elastic fibrous porous ceramics(EFPCs)with high com-pressive strength and low thermal conductivity through ordinary press filtration and subsequent heat treatment.The quasi-layered structure and the well-bonded bridging fibers between layers are the key points for the elasticity of EFPCs.The advanced EFPCs exhibited low density(∼0.126 g cm^(−3)),high com-pressive stress(∼0.356 MPa),and low thermal conductivity(∼0.026 W m^(−1) K^(−1)).Compared with rigid porous fibrous materials,the EFPCs had deformability and excellent shape recovery.In contrast to flexible materials,the EFPCs possessed high compressive stress,thus endowing them with good resistance to de-formation.The emergence of this fascinating material may provide new insights for candidate materials in thermal insulation and other fields.