The storage of hydrogen gas in lined rock caverns(LRCs)may enable the implementation of the firstlarge-scale fossil-free steelmaking process in Sweden,but filling such storage causes joints in the rockmass to open,con...The storage of hydrogen gas in lined rock caverns(LRCs)may enable the implementation of the firstlarge-scale fossil-free steelmaking process in Sweden,but filling such storage causes joints in the rockmass to open,concentrating strains in the lining.The structural interaction between the LRC componentsmust be able to reduce the strain concentration in the sealing steel lining;however,this interaction iscomplex and difficult to predict with analytical methods.In this paper,the strain concentration in LRCsfrom the opening of rock joints is studied using finite element(FE)analyses,where the large-and small-scale deformation behaviors of the LRC are coupled.The model also includes concrete crack initiation anddevelopment with increasing gas pressure and rock joint width.The interaction between the jointed rockmass and the reinforced concrete,the sliding layer,and the steel lining is demonstrated.The results showthat the rock mass quality and the spacing of the rock joints have the greatest influence on the straindistributions in the steel lining.The largest effect of rock joints on the maximum strains in the steellining was observed for geological conditions of“good”quality rock masses.展开更多
H_(2)S selective catalytic oxidation technology is a prospective way for the treatment of low concentration acid gas with simple process operation and low investment. However, undesirable results such as large formati...H_(2)S selective catalytic oxidation technology is a prospective way for the treatment of low concentration acid gas with simple process operation and low investment. However, undesirable results such as large formation of SO_(2) and catalyst deactivation inevitably occur, due to the temperature rise of fixed reaction bed caused by the exothermic reaction. Catalyst with high activity in wide operating temperature window, especially in high temperature range, is urgently needed. In this paper, a series of copper-substituted hexaaluminate catalysts (LaCu_(x), x = 0, 0.5, 1, 1.5, 2, 2.5) were prepared and investigated for the H_(2)S selective oxidation reaction at high temperature conditions (300-550℃). The LaCu_(1) catalyst exhibited excellent catalytic performance and great stability, which was attributed to the best reductive properties and proper pore structure. Besides, two facile deep processing paths were proposed to eliminate the remaining H_(2)S and SO_(2) in the tail gas.展开更多
基金supported by the Swedish Energy Agency(Grant Nos.42684-2,P2022-00209).
文摘The storage of hydrogen gas in lined rock caverns(LRCs)may enable the implementation of the firstlarge-scale fossil-free steelmaking process in Sweden,but filling such storage causes joints in the rockmass to open,concentrating strains in the lining.The structural interaction between the LRC componentsmust be able to reduce the strain concentration in the sealing steel lining;however,this interaction iscomplex and difficult to predict with analytical methods.In this paper,the strain concentration in LRCsfrom the opening of rock joints is studied using finite element(FE)analyses,where the large-and small-scale deformation behaviors of the LRC are coupled.The model also includes concrete crack initiation anddevelopment with increasing gas pressure and rock joint width.The interaction between the jointed rockmass and the reinforced concrete,the sliding layer,and the steel lining is demonstrated.The results showthat the rock mass quality and the spacing of the rock joints have the greatest influence on the straindistributions in the steel lining.The largest effect of rock joints on the maximum strains in the steellining was observed for geological conditions of“good”quality rock masses.
基金financially supported by the National Natural Science Foundation of China (Nos. 21976176, 22006148)the Key R&D Program of Shandong province (No. 2019JZZY010506)the Fundamental Research Funds for the Central Universities。
文摘H_(2)S selective catalytic oxidation technology is a prospective way for the treatment of low concentration acid gas with simple process operation and low investment. However, undesirable results such as large formation of SO_(2) and catalyst deactivation inevitably occur, due to the temperature rise of fixed reaction bed caused by the exothermic reaction. Catalyst with high activity in wide operating temperature window, especially in high temperature range, is urgently needed. In this paper, a series of copper-substituted hexaaluminate catalysts (LaCu_(x), x = 0, 0.5, 1, 1.5, 2, 2.5) were prepared and investigated for the H_(2)S selective oxidation reaction at high temperature conditions (300-550℃). The LaCu_(1) catalyst exhibited excellent catalytic performance and great stability, which was attributed to the best reductive properties and proper pore structure. Besides, two facile deep processing paths were proposed to eliminate the remaining H_(2)S and SO_(2) in the tail gas.