In this paper, a novel structure of a 4H-SiC lateral bipolar junction transistor (LBJT) with a base tield plate and double RESURF in the drift region is presented. Collector-base junction depletion extension in the ...In this paper, a novel structure of a 4H-SiC lateral bipolar junction transistor (LBJT) with a base tield plate and double RESURF in the drift region is presented. Collector-base junction depletion extension in the base region is restricted by the base field plate. Thin base as well as low base doping of the LBJT therefore can be achieved under the condition of avalanche breakdown. Simulation results show that thin base of 0.32 μm and base doping of 3 × 1017 cm 3 are obtained, and corresponding current gain is as high as 247 with avalanche breakdown voltage of 3309 V when the drift region length is 30 μm. Besides, an investigation of a 4H-SiC vertical BJT (VBJT) with comparable breakdown voltage (3357 V) shows that the minimum base width of 0.25 ~tm and base doping as high as 8 × 10^17 cm^-3 contribute to a maximum current gain of only 128.展开更多
文中提出一种非隔离型软开关高增益准Z源DC-DC变换器。变换器具有输入电流连续、输入与输出供地、高电压增益以及开关器件应力小等优点。同时,变换器中所有开关管都工作在零电压开关(zero voltage switching,ZVS)条件下,所有二极管都工...文中提出一种非隔离型软开关高增益准Z源DC-DC变换器。变换器具有输入电流连续、输入与输出供地、高电压增益以及开关器件应力小等优点。同时,变换器中所有开关管都工作在零电压开关(zero voltage switching,ZVS)条件下,所有二极管都工作在零电压零电流开关(zero-voltage zero-current switching,ZVZCS)条件下,可以减小开关管的开关损耗以及二极管的反向恢复损耗。通过引入三耦合绕组提高变换器电压增益,同时,有源钳位电路的加入减小了开关管两端的电压尖峰。较小感值的耦合电感相应的铜损小、体积小,进而提高了变换器的效率和功率密度。深入分析变换器的工作模态,推导变换器的电压增益以及元器件的电压、电流应力,进行稳态分析和参数设计。最后,搭建一台100 kHz、200 W、38~380 V的实验样机,变换器在额定功率的效率为96.13%,实验结果与理论分析相吻合,证明所提变换器的可行性。展开更多
基金supported by the Ministry of Education of China (Grant No. 20100101110056)the Natural Science Foundation for Distinguished Young Scholars of Zhejiang Province of China (Grant No. R1100468)
文摘In this paper, a novel structure of a 4H-SiC lateral bipolar junction transistor (LBJT) with a base tield plate and double RESURF in the drift region is presented. Collector-base junction depletion extension in the base region is restricted by the base field plate. Thin base as well as low base doping of the LBJT therefore can be achieved under the condition of avalanche breakdown. Simulation results show that thin base of 0.32 μm and base doping of 3 × 1017 cm 3 are obtained, and corresponding current gain is as high as 247 with avalanche breakdown voltage of 3309 V when the drift region length is 30 μm. Besides, an investigation of a 4H-SiC vertical BJT (VBJT) with comparable breakdown voltage (3357 V) shows that the minimum base width of 0.25 ~tm and base doping as high as 8 × 10^17 cm^-3 contribute to a maximum current gain of only 128.