期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Effect of Plastic Deformation and H_2S on Dynamic Fracture Toughness of High Strength Casing Steel 被引量:1
1
作者 曾德智 ZHANG Naiyan +3 位作者 TIAN Gang HU Junying ZHANG Zhi SHI Taihe 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第2期397-403,共7页
The effects of plastic deformation and H2 S on fracture toughness of high strength casing steel(C110 steel) were investigated. The studied casing specimens are as follows: original casing, plastic deformation(PD)... The effects of plastic deformation and H2 S on fracture toughness of high strength casing steel(C110 steel) were investigated. The studied casing specimens are as follows: original casing, plastic deformation(PD) casing and PD casing after being immersed in NACE A solution saturated with H2S(PD+H2S). Instrumented impact method was employed to evaluate the impact behaviors of the specimens, meanwhile, dynamic fracture toughness(JId) was calculated by using Rice model and Schindler model. The experimental results show that dynamic fracture toughness of the casing decreases after plastic deformation. Compared with that of the original casing and PD casing, the dynamic fracture toughness decreases further when the PD casing immersed in H2 S, moreover, there are ridge-shaped feature and many secondary cracks present on the fracture surface of the specimens. Impact fracture mechanism of the casing is proposed as follows: the plastic deformation results in the increase of defect density of materials where the atomic hydrogen can accumulate in reversible or irreversible traps and even recombine to form molecular hydrogen, subsequently, the casing material toughness decreases greatly. 展开更多
关键词 sour gas fields high strength casing C110 steel plastic deformation H2S fracture toughness
下载PDF
Effect of Cooling Start Temperature on Microstructure and Mechanical Properties of X80 High Deformability Pipeline Steel 被引量:7
2
作者 ZHENG Xiao-fei KANG Yong-lin +2 位作者 MENG De-liang AN Shou-yong XIA Dian-xiu 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2011年第10期42-46,71,共6页
The effect of cooling (laminar cooling) start temperature on the phase constitution was analyzed by quanti- tative metallography. The martensite/austenite (M/A) island distribution was fixed by colour metallograph... The effect of cooling (laminar cooling) start temperature on the phase constitution was analyzed by quanti- tative metallography. The martensite/austenite (M/A) island distribution was fixed by colour metallography. The strength and uniform elongation of the steels were tested with quasi-static tensile testing machine. The in-coordinate deformation of the soft and hard phases was analyzed using FEM. The results indicate that when the cooling start temperature is 690 ℃, the mechanical properties are the best, meeting the requirements of X80 high deformability pipeline steel. 展开更多
关键词 high deformability pipeline steel cooling start temperature carbon diffusion in-coordinate deformationsM/A island
原文传递
Analysis on Shear Deformation for High Manganese Austenite Steel during Hot Asymmetrical Rolling Process Using Finite Element Method 被引量:4
3
作者 Feng-li SUI Xin WANG +2 位作者 Jun ZHAO Biao MA Chang-sheng LI 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2015年第11期990-995,共6页
Based on the rigid-plastic finite element method(FEM), the shear stress field of deformation region for high manganese austenite steel during hot asymmetrical rolling process was analyzed. The influences of rolling ... Based on the rigid-plastic finite element method(FEM), the shear stress field of deformation region for high manganese austenite steel during hot asymmetrical rolling process was analyzed. The influences of rolling parameters, such as the velocity ratio of upper to lower rolls, the initial temperature of workpiece and the reduction rate, on the shear deformation of three nodes in the upper, center and lower layers were discussed. As the rolling parameters change, distinct shear deformation appears in the upper and lower layers, but the shear deformation in the center layer appears only when the velocity ratio is more than 1.00, and the absolute value of the shear stress in this layer is changed with rolling parameters. A mathematical model which reflected the change of the maximal absolute shear stress for the center layer was established, by which the maximal absolute shear stress for the center layer can be easily calculated and the appropriate rolling technology can be designed. 展开更多
关键词 high manganese austenite steel hot asymmetrical rolling shear deformation finite element method
原文传递
Hot Deformation Behavior and Processing Map of Spray Formed M3∶ 2 High Speed Steel 被引量:2
4
作者 Lin LU Long-gang HOU +3 位作者 Hua CUI Jin-feng HUANG Yong-an ZHANG Ji-shan ZHANG 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2016年第5期501-508,共8页
Hot deformation behavior of a new type of M3∶ 2 high speed steel with niobium addition made by spray forming was investigated based on compression tests in the temperature range of 950-1 150 ℃ and strain rate of 0. ... Hot deformation behavior of a new type of M3∶ 2 high speed steel with niobium addition made by spray forming was investigated based on compression tests in the temperature range of 950-1 150 ℃ and strain rate of 0. 001-10 s^(-1). A comprehensive constitutive equation was obtained,which could be used to predict the flow stress at different strains. Processing map was developed on the basis of the flow stress data using the principles of dynamic material model. The results showed that the flow curves were in fair agreement with the dynamic recrystallization model. The flow stresses,which were calculated by the comprehensive constitutive equation,agreed well with the test data at low strain rates( ≤1 s^(-1)). The material constant( α),stress exponent( n) and the hot deformation activation energy( Q_(HW)) of the new steel were 0. 006 15 MPa^(-1),4. 81 and 546 kJ·mol^(-1),respectively. Analysis of the processing map with an observation of microstructures revealed that hot working processes of the steel could be carried out safely in the domain( T = 1 050-1 150 ℃,ε = 0. 01- 0. 1 s^(-1))with about 33% peak efficiency of power dissipation( η). Cracks was expected in two domains at either lower temperatures( 〈 1 000 ℃) or low strain rates( 0. 001 s^(-1)) with different cracking mechanisms. Flow localization occurred when the strain rates exceeded 1 s^(-1) at all testing temperatures. 展开更多
关键词 high speed steel spray forming hot deformation processing map niobium
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部