Optical emission spectroscopy (OES) was used to study the gas phase composition near the substrate surface during diamond deposition by high-power DC arc plasma jet chemical vapor deposition (CVD). C2 radical was ...Optical emission spectroscopy (OES) was used to study the gas phase composition near the substrate surface during diamond deposition by high-power DC arc plasma jet chemical vapor deposition (CVD). C2 radical was determined as the main carbon radical in this plasma atmosphere. The deposition parameters, such as substrate temperature, anode-substrate distance, methane concentration, and gas flow rate, were inspected to find out the influence on the gas phase. A strong dependence of the concentrations and distribution of radicals on substrate temperature was confirmed by the design of experiments (DOE). An explanation for this dependence could be that radicals near the substrate surface may have additional ionization or dissociation and also have recombination, or are consumed on the substrate surface where chemical reactions occur.展开更多
Hydrogenated microcrystalline silicon (μc-Si:H) thin films were prepared by high- pressure radio-frequency (13.56 MHz) plasma enhanced chemical vapor deposition (rf-PECVD) with a screened plasma. The deposition rate ...Hydrogenated microcrystalline silicon (μc-Si:H) thin films were prepared by high- pressure radio-frequency (13.56 MHz) plasma enhanced chemical vapor deposition (rf-PECVD) with a screened plasma. The deposition rate and crystallinity varying with the deposition pressure, rf power, hydrogen dilution ratio and electrodes distance were systematically studied. By optimizing the deposition parameters the device quality μc-Si:H films have been achieved with a high deposition rate of 7.8 /s at a high pressure. The Voc of 560 mV and the FF of 0.70 have been achieved for a single-junction μc-Si:H p-i-n solar cell at a deposition rate of 7.8 /s.展开更多
Understanding the stability and current-carrying capacity of graphene spintronic devices is key to their applications in graphene channel-based spin current sensors,spin-torque oscillators,and potential spin-integrate...Understanding the stability and current-carrying capacity of graphene spintronic devices is key to their applications in graphene channel-based spin current sensors,spin-torque oscillators,and potential spin-integrated circuits.However,despite the demonstrated high current densities in exfoliated graphene,the current-carrying capacity of large-scale chemical vapor deposited(CVD)graphene is not established.Particularly,the grainy nature of chemical vapor deposited graphene and the presence of a tunnel barrier in CVD graphene spin devices pose questions about the stability of high current electrical spin injection.In this work,we observe that despite structural imperfections,CVD graphene sustains remarkably highest currents of 5.2×10^(8)A/cm^(2),up to two orders higher than previously reported values in multilayer CVD graphene,with the capacity primarily dependent upon the sheet resistance of graphene.Furthermore,we notice a reversible regime,up to which CVD graphene can be operated without degradation with operating currents as high as 108 A/cm^(2),significantly high and durable over long time of operation with spin valve signals observed up to such high current densities.At the same time,the tunnel barrier resistance can be modified by the application of high currents.Our results demonstrate the robustness of large-scale CVD graphene and bring fresh insights for engineering and harnessing pure spin currents for innovative device applications.展开更多
Aligned carbon nanotubes (CNTs) were prepared on Ni-coated Ni substrate by microwave plasma chemical vapor deposition (MWPCVD) with a mixture of methane and hydrogen gases at temperature of 550℃.The experimental resu...Aligned carbon nanotubes (CNTs) were prepared on Ni-coated Ni substrate by microwave plasma chemical vapor deposition (MWPCVD) with a mixture of methane and hydrogen gases at temperature of 550℃.The experimental results show a direct correlation between the alignment of CNTs and the density of the catalyst particles at low temperature.When the particle density is high enough,among CNTs there are strong interactions that can inhibit CNTs from growing randomly.The crowding effect among dense CNTs results in the aligned growth of CNTs at low temperature.展开更多
Raman spectra and scanning electron microscope (SEM) techniques were used to determine the structural properties of microcrb'stalline silicon (μc-Si:H) films deposited on different substrates with the very high...Raman spectra and scanning electron microscope (SEM) techniques were used to determine the structural properties of microcrb'stalline silicon (μc-Si:H) films deposited on different substrates with the very high frequency plasma-enhanced chemical vapor deposition (VHF-PECVD) technique. Using the Raman spectra, the values of crystalline volume fraction Xc and average grain size d are 86%, 12.3nm; 65%, 5.45nm; and 38%, 4.05nm, for single crystalline silicon wafer, coming 7059 glass, and general optical glass substrates, respectively. The SEM images further demonstrate the substrate effect on the film surface roughness. For the single crystalline silicon wafer and Coming 7059 glass, the surfaces of the μc-Si:H films are fairly smooth because of the homogenous growth or h'ttle lattice mismatch. But for general optical glass, the surface of the μ-Si: H film is very rough, thus the growing surface roughness affects the crystallization process and determines the average grain size of the deposited material. Moreover, with the measurements of thickness, photo and dark conductivity, photosensitivity and activation energy, the substrate effect on the deposition rate, optical and electrical properties of the μc-Si:H thin films have also been investigated. On the basis of the above results, it can be concluded that the substrates affect the initial growing layers acting as a seed for the formation of a crystalline-like material and then the deposition rates, optical and electrical properties are also strongly influenced, hence, deposition parameter optimization is the key method that can be used to obtain a good initial growing layer, to realize the deposition of μc-Si:H films with device-grade quality on cheap substrates such as general glass.展开更多
基金the National High-Tech Research and Development Program of China (No.2002AA305508)the National Natural Science Foundation of China (No.50472095)+1 种基金the Scientific Research Foundation for the Returned Overseas Chinese Scholars (No.2003-14)Beijing Novel Project (No. 2003A13).]
文摘Optical emission spectroscopy (OES) was used to study the gas phase composition near the substrate surface during diamond deposition by high-power DC arc plasma jet chemical vapor deposition (CVD). C2 radical was determined as the main carbon radical in this plasma atmosphere. The deposition parameters, such as substrate temperature, anode-substrate distance, methane concentration, and gas flow rate, were inspected to find out the influence on the gas phase. A strong dependence of the concentrations and distribution of radicals on substrate temperature was confirmed by the design of experiments (DOE). An explanation for this dependence could be that radicals near the substrate surface may have additional ionization or dissociation and also have recombination, or are consumed on the substrate surface where chemical reactions occur.
基金Supported by the National Natural Science Foundation of China (Grant No. 50662003)the State Development Program for Basic Research of China (Grant No. G2000028208)
文摘Hydrogenated microcrystalline silicon (μc-Si:H) thin films were prepared by high- pressure radio-frequency (13.56 MHz) plasma enhanced chemical vapor deposition (rf-PECVD) with a screened plasma. The deposition rate and crystallinity varying with the deposition pressure, rf power, hydrogen dilution ratio and electrodes distance were systematically studied. By optimizing the deposition parameters the device quality μc-Si:H films have been achieved with a high deposition rate of 7.8 /s at a high pressure. The Voc of 560 mV and the FF of 0.70 have been achieved for a single-junction μc-Si:H p-i-n solar cell at a deposition rate of 7.8 /s.
基金the European Research Council(ERC)Project SPINNER,Swedish Research Council(VR Starting Grants 2016-03278,2017-05030,as well as project grant 2021-03675)Stiftelsen Olle Engkvist Byggmästare(No.200-0602)+2 种基金Energimyndigheten(No.48698-1)Formas(No.2019-01326)Wenner-Gren Stiftelserna(Nos.UPD2018-0003 and UPD2019-0166).
文摘Understanding the stability and current-carrying capacity of graphene spintronic devices is key to their applications in graphene channel-based spin current sensors,spin-torque oscillators,and potential spin-integrated circuits.However,despite the demonstrated high current densities in exfoliated graphene,the current-carrying capacity of large-scale chemical vapor deposited(CVD)graphene is not established.Particularly,the grainy nature of chemical vapor deposited graphene and the presence of a tunnel barrier in CVD graphene spin devices pose questions about the stability of high current electrical spin injection.In this work,we observe that despite structural imperfections,CVD graphene sustains remarkably highest currents of 5.2×10^(8)A/cm^(2),up to two orders higher than previously reported values in multilayer CVD graphene,with the capacity primarily dependent upon the sheet resistance of graphene.Furthermore,we notice a reversible regime,up to which CVD graphene can be operated without degradation with operating currents as high as 108 A/cm^(2),significantly high and durable over long time of operation with spin valve signals observed up to such high current densities.At the same time,the tunnel barrier resistance can be modified by the application of high currents.Our results demonstrate the robustness of large-scale CVD graphene and bring fresh insights for engineering and harnessing pure spin currents for innovative device applications.
文摘Aligned carbon nanotubes (CNTs) were prepared on Ni-coated Ni substrate by microwave plasma chemical vapor deposition (MWPCVD) with a mixture of methane and hydrogen gases at temperature of 550℃.The experimental results show a direct correlation between the alignment of CNTs and the density of the catalyst particles at low temperature.When the particle density is high enough,among CNTs there are strong interactions that can inhibit CNTs from growing randomly.The crowding effect among dense CNTs results in the aligned growth of CNTs at low temperature.
基金This work was supported by the National Key Basic Research and Development Programme of China (No. G2000028202 and G2000028203) Guangdong Provincial Natural Science Foundation of China (No. 05300378) Programme on Natural Science of Jinan University (No. 51204056).
文摘Raman spectra and scanning electron microscope (SEM) techniques were used to determine the structural properties of microcrb'stalline silicon (μc-Si:H) films deposited on different substrates with the very high frequency plasma-enhanced chemical vapor deposition (VHF-PECVD) technique. Using the Raman spectra, the values of crystalline volume fraction Xc and average grain size d are 86%, 12.3nm; 65%, 5.45nm; and 38%, 4.05nm, for single crystalline silicon wafer, coming 7059 glass, and general optical glass substrates, respectively. The SEM images further demonstrate the substrate effect on the film surface roughness. For the single crystalline silicon wafer and Coming 7059 glass, the surfaces of the μc-Si:H films are fairly smooth because of the homogenous growth or h'ttle lattice mismatch. But for general optical glass, the surface of the μ-Si: H film is very rough, thus the growing surface roughness affects the crystallization process and determines the average grain size of the deposited material. Moreover, with the measurements of thickness, photo and dark conductivity, photosensitivity and activation energy, the substrate effect on the deposition rate, optical and electrical properties of the μc-Si:H thin films have also been investigated. On the basis of the above results, it can be concluded that the substrates affect the initial growing layers acting as a seed for the formation of a crystalline-like material and then the deposition rates, optical and electrical properties are also strongly influenced, hence, deposition parameter optimization is the key method that can be used to obtain a good initial growing layer, to realize the deposition of μc-Si:H films with device-grade quality on cheap substrates such as general glass.