High-density poly-ethylene (HDPE) is a nonbiodegradable recyclable plastic which is widely utilized in single use packaging applications. Consequently, it constitutes a significant amount of plastic waste found in lan...High-density poly-ethylene (HDPE) is a nonbiodegradable recyclable plastic which is widely utilized in single use packaging applications. Consequently, it constitutes a significant amount of plastic waste found in landfills. From literature, it has been shown that parts produced using composites of HDPE with carbohydrate-based polymers, such as thermoplastic starch (TPS), experience mechanical degradation through hydrolytic degradation process. The possible utilization of recycled-HDPE (rHDPE) and TPS composite in nonconventional manufacturing processes such as Fused filament fabrication (FFF) has however not been explored. This study explores the potential application of rHDPE and TPS composites in FFF and optimizes the extrusion process parameters used in rHDPE-TPS filament production process. Taguchi method was utilized to analyze the extrusion process. The extrusion process parameters studied were the spooling speed, extrusion speed and the extrusion temperatures. The response variable studied was the filament diameter. In this research, the maximum TPS content achieved during filament production was 40 wt%. This filament was however challenging to use in FFF printers due to frequent nozzle clogging. Printing was therefore done with filaments that contained 0 - 30 wt% TPS. The experimental results showed that the most significant parameter in extrusion process was the spooling speed, followed by extrusion speed. Extrusion temperature had the least significant influence on the filament diameter. It was observed that increase in TPS content resulted in reduced warping and increased rate of hydrolytic degradation. Mechanical properties of printed parts were investigated and the results showed that increasing TPS content resulted in reduction in tensile strength, reduction in compression strength and increase in stiffness. The findings of this research provide valuable insights to plastic recycling industries and researchers regarding the utilization of recycled HDPE and TPS composites as substitute materials in FFF.展开更多
Our work aims to evaluate a complete outlook of virgin high density polyethylene (HDPE) and polypropylene (PP) polyblends. Virgin PP of 20, 30 and 50 weight% is compounded with virgin HDPE. The properties like tensile...Our work aims to evaluate a complete outlook of virgin high density polyethylene (HDPE) and polypropylene (PP) polyblends. Virgin PP of 20, 30 and 50 weight% is compounded with virgin HDPE. The properties like tensile strength, flexural strength, Izod impact strength are examined. Scanning electron microscopy (SEM) and polarised light microscopy (PLM) are used to observe the surface and crystal morphology. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) tests verify the non compatibility of both polymers. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) techniques are used to study the thermal behaviour of composites. The results manifest co-occurring spherulites for polyblends;indicating the composite to be a physical blend of continuous and dispersed phases, but on the other hand PP improves the tensile and flexural properties of HDPE.展开更多
The structural changes around a crack tip in a high density polyethylene were investigated by means of scanning synchrotron microfocus small-angle X-ray scattering technique. The scattering data confirm the process of...The structural changes around a crack tip in a high density polyethylene were investigated by means of scanning synchrotron microfocus small-angle X-ray scattering technique. The scattering data confirm the process of craze structure development near a crack tip based on the evolution of voids. In addition, it was found that the main stress in the plastic zone near a crack tip exhibited a gradient distribution with respect to its strength and direction. The whole damaged area showed a strain distribution indicating a flow behavior toward the crack tip.展开更多
High density polyethylene (HDPE)/polyethylene-block-poly(ethylene glycol) (PE-b-PEG) blend porous membranes were prepared via thermally induced phase separation (TIPS) process using diphenyl ether (DPE) as d...High density polyethylene (HDPE)/polyethylene-block-poly(ethylene glycol) (PE-b-PEG) blend porous membranes were prepared via thermally induced phase separation (TIPS) process using diphenyl ether (DPE) as diluent. The phase diagrams of HDPE/PE-b-PEG/DPE systems were determined by optical microscopy and differential scanning calorimetry (DSC). By varying the content of PE-b-PEG, the effects of PE-b-PEG copolymer on morphology and crystalline structure of membranes were studied by scanning electron microscopy (SEM) and wide angle X-ray diffraction (WAXD). The chemical compositions of whole membranes and surface layers were characterized by elementary analysis, Fourier transform infrared spectroscopy-attenuated total reflection (FTIR-ATR) and X-ray photoelectron spectroscopy (XPS). Water contact angle, static protein adsorption and water flux experiments were used to evaluate the hydrophilicity, antifouling and water permeation properties of the membranes. It was found that the addition of PE-b-PEG increased the pore size of the obtained blend membranes. In the investigated range of PE-b-PEG content, the PEG blocks could not aggregate into obviously separated domains in membrane matrix. More importantly, PE-b-PEG could not only be retained stably in the membrane matrix during membrane formation, but also enrich at the membrane surface layer. Such stability and surface enrichment of PE-b-PEG endowed the blend membranes with improved hydrophilicity, protein absorption resistance and water permeation properties, which would be substantially beneficial to HDPE membranes for water treatment application.展开更多
The basic mechanical behaviors of high density polyethylene electrofusion welded joint at different temperatures were studied by using differently designed specimens in this paper. The results show that the strength o...The basic mechanical behaviors of high density polyethylene electrofusion welded joint at different temperatures were studied by using differently designed specimens in this paper. The results show that the strength of weld bonding plane is higher than that of the pipe and socket materials at room temperature. In order to get the shear strength of electrofusion welded joint, the effective bond lengths were reduced by cutting artificial groove through the socket. The effective bonding length of welded joint to get the shear strength is decreased with decreasing testing temperature. The shear strength and the sensibility to sharp notch of HDPE material increased with decreasing temperature.展开更多
Objective: To introduce the clinical effect among patients who received an unwrapped orbital implant with high density porous polyethylene material (Medpor) after enucleation or evisceration. Methods: Retrospective an...Objective: To introduce the clinical effect among patients who received an unwrapped orbital implant with high density porous polyethylene material (Medpor) after enucleation or evisceration. Methods: Retrospective analysis of a series of 302 patients with anophthalmia who underwent placement of an unwrapped high density porous polyethylene orbital implant. We compared the patients (n=180) who accepted primary implant placement with those (n=122) who accepted secondary implant placement. Parameters evaluated included: age at time of surgery, date of surgery, sex, implant type and size, surgery type, the surgical procedure and technique performed, and complications. Results: The time of follow-up ranged from 2.0 to 58.0 months (mean 32.5 months). A total of 5 of 302 (1.66%) cases had documented postoperative complications. The following problems were noted after surgery: implant exposure, 3 patients (0.99%); implant removed due to orbital infection, 1 patient (0.34%); ptosis, 1 patient (0.34%). There were no significant complications observed in other 297 cases and all implants showed good orbital mo- tility. The clinical effect of primary implant placement is better than that of secondary placement. Conclusion: High density porous polyethylene material can be used successfully as an unwrapped orbital implant in anopthalmic socket surgery with minimal complications. The material is well tolerated, nonantigenic and has low rate of infection and migration.展开更多
A detailed study was performed on the crystal structures of pan-milled high-density polyethylene (HDPE) using differential scanning calorimetry (DSC) and X-ray diffraction. The crystallinity of HDPE first decreased sl...A detailed study was performed on the crystal structures of pan-milled high-density polyethylene (HDPE) using differential scanning calorimetry (DSC) and X-ray diffraction. The crystallinity of HDPE first decreased slightly, followed by a gradual increase with increasing milling times. Monoclinic crystals appeared after 4 cycles of milling. With increasing times of milling, the proportion of monoclinic crystals increased significantly while the proportion of orthorhombic crystals decreased gradually. With increasing times of milling, the crystallite size of orthorhombic form decreased greatly, while the size of monoclinic crystallites kept almost constant during milling.展开更多
High-density polyethylene (HDPE) films were irradiated by 60Co gamma ray with a dose of 100 kGy in air and then immersed in aqueous solution of acrylic acid (AA) and sodium styrene sulfonate (SSS) at different tempera...High-density polyethylene (HDPE) films were irradiated by 60Co gamma ray with a dose of 100 kGy in air and then immersed in aqueous solution of acrylic acid (AA) and sodium styrene sulfonate (SSS) at different temperature. The effects of grafting conditions such as temperature, reaction time, Mohr’s salt concentration, and total concentration of monomer on grafting yield were studied. Both grafting yield of AA and SSS onto HDPE respectively increases with total concentration of monomers. The highest grafting yield was observed at 3 mol/L monomers where the grafted PE swelled to the largest extent in the monomers mixture. The grafting yield increases with reaction time and then levels off. At higher temperature, the grafting yield decreases with Mohr’s salt concentration, but increases at low temperature when Mohr’s salt concentration is 0.083%. Which can be interpreted that in the presence of Fe2+ diperoxides and hydroperoxides may decompose at low temperature to form radical which can initiate the grafting. The physical and chemical properties of grafting films were also investigated.展开更多
The effect of pan-milling on the rheological properties of high density polyethylene (HDPE) was studied. An innovative milling apparatus, viz. an inlaid pan-mill, was used. Melt indexer, capillary rheometer, Haake Rhe...The effect of pan-milling on the rheological properties of high density polyethylene (HDPE) was studied. An innovative milling apparatus, viz. an inlaid pan-mill, was used. Melt indexer, capillary rheometer, Haake Rheocord 90 single-screw extruder and Brabender rheometer were used to evaluate the rheological properties of HDPE. HDPE with higher initial molecular weight and larger particle size was easier to degrade under pan-milling stress, as indicated by the melt index. Pressure oscillation in capillary flow occurred at significantly higher shear stress and shear rate for milled HDPE than for unmilled HDPE. The apparent shear viscosity of HDPE decreased with increasing times of milling. After milling, the flow activation energy decreased and thus the sensitivity of viscosity to temperature was reduced. Die pressure and torque during single screw extrusion were reduced significantly after milling. Plasticizing time as measured in a Brabander mixer decreased markedly with increasing milling times.展开更多
The rheological behavior of composites made with high-density polyethylene (HDPE) and different agro fiber by-products such as corncob (CCF), Rice hull (RHF), Flax shives (FSF) and Walnut shell (WSF) flour of 60 - 100...The rheological behavior of composites made with high-density polyethylene (HDPE) and different agro fiber by-products such as corncob (CCF), Rice hull (RHF), Flax shives (FSF) and Walnut shell (WSF) flour of 60 - 100 mesh were studied. The experimental results were obtained from samples containing 65 vol.% agro fiber and 3 wt.% lubricant. Particle sizes distribution of the agro fibers was in the range of 0.295 mm to ?0.125 mm. SEM showed evidence of complete matrix/fiber impregnation or wetting. The melt rheological data in terms of complex viscosity (η*), storage modulus (G'), loss modulus (G"), and loss tangent (tanδ) were evaluated and compared for different samples. Due to higher probability of agglomeration formation in the samples containing 65 vol.% of agro fillers, the storage modulus, loss modulus and complex viscosity of these samples were high. The unique change in all the samples is due to the particle size distribution of the agro fibers. The storage and loss modulus increased with increasing shear rates for all the composites, except for Walnut shell composite which exhibited unusual decrease in storage modulus with increasing shear rate. Damping factor (tanδ) decreased with increasing shear rate for all the composites at 65 vol.% filler load although there were differences among the composites. Maximum torque tended to increase at the 65 vol.% agro fiber load for all composites. Corncob and Walnut shell composites gave higher torque and steady state torque values in comparison with Flax shives and Rice hull composites due to differences in particle sizes distribution of the agro fibers.展开更多
文摘High-density poly-ethylene (HDPE) is a nonbiodegradable recyclable plastic which is widely utilized in single use packaging applications. Consequently, it constitutes a significant amount of plastic waste found in landfills. From literature, it has been shown that parts produced using composites of HDPE with carbohydrate-based polymers, such as thermoplastic starch (TPS), experience mechanical degradation through hydrolytic degradation process. The possible utilization of recycled-HDPE (rHDPE) and TPS composite in nonconventional manufacturing processes such as Fused filament fabrication (FFF) has however not been explored. This study explores the potential application of rHDPE and TPS composites in FFF and optimizes the extrusion process parameters used in rHDPE-TPS filament production process. Taguchi method was utilized to analyze the extrusion process. The extrusion process parameters studied were the spooling speed, extrusion speed and the extrusion temperatures. The response variable studied was the filament diameter. In this research, the maximum TPS content achieved during filament production was 40 wt%. This filament was however challenging to use in FFF printers due to frequent nozzle clogging. Printing was therefore done with filaments that contained 0 - 30 wt% TPS. The experimental results showed that the most significant parameter in extrusion process was the spooling speed, followed by extrusion speed. Extrusion temperature had the least significant influence on the filament diameter. It was observed that increase in TPS content resulted in reduced warping and increased rate of hydrolytic degradation. Mechanical properties of printed parts were investigated and the results showed that increasing TPS content resulted in reduction in tensile strength, reduction in compression strength and increase in stiffness. The findings of this research provide valuable insights to plastic recycling industries and researchers regarding the utilization of recycled HDPE and TPS composites as substitute materials in FFF.
文摘Our work aims to evaluate a complete outlook of virgin high density polyethylene (HDPE) and polypropylene (PP) polyblends. Virgin PP of 20, 30 and 50 weight% is compounded with virgin HDPE. The properties like tensile strength, flexural strength, Izod impact strength are examined. Scanning electron microscopy (SEM) and polarised light microscopy (PLM) are used to observe the surface and crystal morphology. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) tests verify the non compatibility of both polymers. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) techniques are used to study the thermal behaviour of composites. The results manifest co-occurring spherulites for polyblends;indicating the composite to be a physical blend of continuous and dispersed phases, but on the other hand PP improves the tensile and flexural properties of HDPE.
基金supported by the"Hundred Talents Project"of the Chinese Academy of Sciences,the National Basic Research Program of China(No.2005CB623800)National Natural Science Foundation of China(Nos.50603024, 50621302) and HASYLAB projectⅡ-20052011
文摘The structural changes around a crack tip in a high density polyethylene were investigated by means of scanning synchrotron microfocus small-angle X-ray scattering technique. The scattering data confirm the process of craze structure development near a crack tip based on the evolution of voids. In addition, it was found that the main stress in the plastic zone near a crack tip exhibited a gradient distribution with respect to its strength and direction. The whole damaged area showed a strain distribution indicating a flow behavior toward the crack tip.
基金supported by the 863 program(No.2006AA03Z233)973 program(No.2009CB623402) of China
文摘High density polyethylene (HDPE)/polyethylene-block-poly(ethylene glycol) (PE-b-PEG) blend porous membranes were prepared via thermally induced phase separation (TIPS) process using diphenyl ether (DPE) as diluent. The phase diagrams of HDPE/PE-b-PEG/DPE systems were determined by optical microscopy and differential scanning calorimetry (DSC). By varying the content of PE-b-PEG, the effects of PE-b-PEG copolymer on morphology and crystalline structure of membranes were studied by scanning electron microscopy (SEM) and wide angle X-ray diffraction (WAXD). The chemical compositions of whole membranes and surface layers were characterized by elementary analysis, Fourier transform infrared spectroscopy-attenuated total reflection (FTIR-ATR) and X-ray photoelectron spectroscopy (XPS). Water contact angle, static protein adsorption and water flux experiments were used to evaluate the hydrophilicity, antifouling and water permeation properties of the membranes. It was found that the addition of PE-b-PEG increased the pore size of the obtained blend membranes. In the investigated range of PE-b-PEG content, the PEG blocks could not aggregate into obviously separated domains in membrane matrix. More importantly, PE-b-PEG could not only be retained stably in the membrane matrix during membrane formation, but also enrich at the membrane surface layer. Such stability and surface enrichment of PE-b-PEG endowed the blend membranes with improved hydrophilicity, protein absorption resistance and water permeation properties, which would be substantially beneficial to HDPE membranes for water treatment application.
基金This work was supported by the National Natural Science Foundation of China under grant No.50075061.
文摘The basic mechanical behaviors of high density polyethylene electrofusion welded joint at different temperatures were studied by using differently designed specimens in this paper. The results show that the strength of weld bonding plane is higher than that of the pipe and socket materials at room temperature. In order to get the shear strength of electrofusion welded joint, the effective bond lengths were reduced by cutting artificial groove through the socket. The effective bonding length of welded joint to get the shear strength is decreased with decreasing testing temperature. The shear strength and the sensibility to sharp notch of HDPE material increased with decreasing temperature.
文摘Objective: To introduce the clinical effect among patients who received an unwrapped orbital implant with high density porous polyethylene material (Medpor) after enucleation or evisceration. Methods: Retrospective analysis of a series of 302 patients with anophthalmia who underwent placement of an unwrapped high density porous polyethylene orbital implant. We compared the patients (n=180) who accepted primary implant placement with those (n=122) who accepted secondary implant placement. Parameters evaluated included: age at time of surgery, date of surgery, sex, implant type and size, surgery type, the surgical procedure and technique performed, and complications. Results: The time of follow-up ranged from 2.0 to 58.0 months (mean 32.5 months). A total of 5 of 302 (1.66%) cases had documented postoperative complications. The following problems were noted after surgery: implant exposure, 3 patients (0.99%); implant removed due to orbital infection, 1 patient (0.34%); ptosis, 1 patient (0.34%). There were no significant complications observed in other 297 cases and all implants showed good orbital mo- tility. The clinical effect of primary implant placement is better than that of secondary placement. Conclusion: High density porous polyethylene material can be used successfully as an unwrapped orbital implant in anopthalmic socket surgery with minimal complications. The material is well tolerated, nonantigenic and has low rate of infection and migration.
文摘A detailed study was performed on the crystal structures of pan-milled high-density polyethylene (HDPE) using differential scanning calorimetry (DSC) and X-ray diffraction. The crystallinity of HDPE first decreased slightly, followed by a gradual increase with increasing milling times. Monoclinic crystals appeared after 4 cycles of milling. With increasing times of milling, the proportion of monoclinic crystals increased significantly while the proportion of orthorhombic crystals decreased gradually. With increasing times of milling, the crystallite size of orthorhombic form decreased greatly, while the size of monoclinic crystallites kept almost constant during milling.
文摘High-density polyethylene (HDPE) films were irradiated by 60Co gamma ray with a dose of 100 kGy in air and then immersed in aqueous solution of acrylic acid (AA) and sodium styrene sulfonate (SSS) at different temperature. The effects of grafting conditions such as temperature, reaction time, Mohr’s salt concentration, and total concentration of monomer on grafting yield were studied. Both grafting yield of AA and SSS onto HDPE respectively increases with total concentration of monomers. The highest grafting yield was observed at 3 mol/L monomers where the grafted PE swelled to the largest extent in the monomers mixture. The grafting yield increases with reaction time and then levels off. At higher temperature, the grafting yield decreases with Mohr’s salt concentration, but increases at low temperature when Mohr’s salt concentration is 0.083%. Which can be interpreted that in the presence of Fe2+ diperoxides and hydroperoxides may decompose at low temperature to form radical which can initiate the grafting. The physical and chemical properties of grafting films were also investigated.
文摘The effect of pan-milling on the rheological properties of high density polyethylene (HDPE) was studied. An innovative milling apparatus, viz. an inlaid pan-mill, was used. Melt indexer, capillary rheometer, Haake Rheocord 90 single-screw extruder and Brabender rheometer were used to evaluate the rheological properties of HDPE. HDPE with higher initial molecular weight and larger particle size was easier to degrade under pan-milling stress, as indicated by the melt index. Pressure oscillation in capillary flow occurred at significantly higher shear stress and shear rate for milled HDPE than for unmilled HDPE. The apparent shear viscosity of HDPE decreased with increasing times of milling. After milling, the flow activation energy decreased and thus the sensitivity of viscosity to temperature was reduced. Die pressure and torque during single screw extrusion were reduced significantly after milling. Plasticizing time as measured in a Brabander mixer decreased markedly with increasing milling times.
文摘The rheological behavior of composites made with high-density polyethylene (HDPE) and different agro fiber by-products such as corncob (CCF), Rice hull (RHF), Flax shives (FSF) and Walnut shell (WSF) flour of 60 - 100 mesh were studied. The experimental results were obtained from samples containing 65 vol.% agro fiber and 3 wt.% lubricant. Particle sizes distribution of the agro fibers was in the range of 0.295 mm to ?0.125 mm. SEM showed evidence of complete matrix/fiber impregnation or wetting. The melt rheological data in terms of complex viscosity (η*), storage modulus (G'), loss modulus (G"), and loss tangent (tanδ) were evaluated and compared for different samples. Due to higher probability of agglomeration formation in the samples containing 65 vol.% of agro fillers, the storage modulus, loss modulus and complex viscosity of these samples were high. The unique change in all the samples is due to the particle size distribution of the agro fibers. The storage and loss modulus increased with increasing shear rates for all the composites, except for Walnut shell composite which exhibited unusual decrease in storage modulus with increasing shear rate. Damping factor (tanδ) decreased with increasing shear rate for all the composites at 65 vol.% filler load although there were differences among the composites. Maximum torque tended to increase at the 65 vol.% agro fiber load for all composites. Corncob and Walnut shell composites gave higher torque and steady state torque values in comparison with Flax shives and Rice hull composites due to differences in particle sizes distribution of the agro fibers.