Lodging in maize leads to yield losses worldwide.In this study,we determined the effects of traditional and optimized nitrogen management strategies on culm morphological characteristics,culm mechanical strength,ligni...Lodging in maize leads to yield losses worldwide.In this study,we determined the effects of traditional and optimized nitrogen management strategies on culm morphological characteristics,culm mechanical strength,lignin content,root growth,lodging percentage and production in maize at a high plant density.We compared a traditional nitrogen(N)application rate of 300 kg ha–1(R)and an optimized N application rate of 225 kg ha^(–1)(O)under four N application modes:50%of N applied at sowing and 50%at the 10th-leaf stage(N1);100%of N applied at sowing(N2);40%of N applied at sowing,40%at the 10th-leaf stage and 20%at tasseling stage(N3);and 30%of N applied at sowing,30%at the 10th-leaf stage,20%at the tasseling stage,and 20%at the silking stage(N4).The optimized N rate(225 kg ha^(–1))significantly reduced internode lengths,plant height,ear height,center of gravity height and lodging percentage.The optimized N rate significantly increased internode diameters,filling degrees,culm mechanical strength,root growth and lignin content.The application of N in four split doses(N4)significantly improved culm morphological characteristics,culm mechanical strength,lignin content,and root growth,while it reduced internode lengths,plant height,ear height,center of gravity height and lodging percentage.Internode diameters,filling degrees,culm mechanical strength,lignin content,number and diameter of brace roots,root volume,root dry weight,bleeding safe and grain yield were significantly negatively correlated with plant height,ear height,center of gravity height,internode lengths and lodging percentage.In conclusion,treatment ON4 significantly reduced the lodging percentage by improving the culm morphological characteristics,culm mechanical strength,lignin content,and root growth,so it improved the production of the maize crop at a high plant density.展开更多
The research about subsurface characteristics by using transient electromagnetic method(TEM) and high density resistivity method(HDRM) were already conducted in Ordos. The objective of this research is to detect c...The research about subsurface characteristics by using transient electromagnetic method(TEM) and high density resistivity method(HDRM) were already conducted in Ordos. The objective of this research is to detect coalmine goaf areas based on rock resistivity. The data processing using wavelet transform, three point smoothing, RES2 DINV and Maxwell processing software to obtain 2D resistivity structure. The results showed that the layers with maximum resistivity values(30e33 U m on Line 1, 30e31 U m on Line 2, 32e40 U m on Line3) are founded at station 1e7, and 14e20 on Line 1,13e18 on Line 2, and 8e13 and 16e20 on Line 3 which is predicted as goaf layer, and the minimum resistivity values(20e26 U m of TEM, 45e75 U m of HDRM) at the other layers. This resistivity difference was caused by the geology and characteristics of the study area which is located close by the cleugh with rich coal, so the goaf area distinguishable with aquifer layer and coal seam. The results were also significant accidents and serious destruction of ecological environment.展开更多
The detecting examples using the high density resistivity method, about the evaluation of containing water characteristic from the floor rock and the height of overburden failure, were given. It expresses that the hig...The detecting examples using the high density resistivity method, about the evaluation of containing water characteristic from the floor rock and the height of overburden failure, were given. It expresses that the high density resistivity method has good effect with strong maneuverability and continuous observing section during the prevention and cure for mine water disaster. At the same time, the article pointed out that the study of space data inversion and dynamic watching technology about the high density resistivity method must be enhanced in the future because of special condition of data collecting in mine.展开更多
High-density resistivity method is a new, efficient electrical prospecting method, which can complete a two-dimensional (vertical and horizontal) prospecting process, possesses certain imaging functions for the geo-...High-density resistivity method is a new, efficient electrical prospecting method, which can complete a two-dimensional (vertical and horizontal) prospecting process, possesses certain imaging functions for the geo-electric structure, and integrates electric profiling method with electric sounding method together. In this paper, the basic principle, data processing, and result explanation and inference of high- density resistivity method are introduced by taking the application of high-density resistivity method to the prospecting project in the slope of Gongchangling Open Pit, Liaoyang. The result of the prospecting result map analysis showed that the prospecting result was basically in line with the actual situation and proved the great significance of high-density resistivity method to the evaluation on the slope stability of Gongchangling open pit.展开更多
Based on the relationship between the diameter and buried depth of goal, the authors establish the forward modeling by Res2dmod and inverse the model by Res2dinv. Thus, three kinds of models are obtained : the model ...Based on the relationship between the diameter and buried depth of goal, the authors establish the forward modeling by Res2dmod and inverse the model by Res2dinv. Thus, three kinds of models are obtained : the model of single resistivity anomalous body, model of double different distance resistivity anomalous body, and model of layered resistivity anomalous body. Using forward and inversion, the image of detection is simulated, and the reliability is proved by comparing with the engineering examples.展开更多
Increasing plant density is an effective way to enhance maize yield, but often increases lodging rate and severity, significantly elevating the risk and cost of maize production. Therefore, lodging is a major factor r...Increasing plant density is an effective way to enhance maize yield, but often increases lodging rate and severity, significantly elevating the risk and cost of maize production. Therefore, lodging is a major factor restricting future increases in maize yield through high-density planting. This paper reviewed previous research on the relationships between maize lodging rate and plant morphology, mechanical strength of stalks, anatomical and biochemical characteristics of stalks, root characteristics, damage from pests and diseases, environmental factors, and genomic characteristics. The effects of planting density on these factors and explored possible ways to improve lodging resistance were also analyzed in this paper. The results provide a basis for future research on increasing maize lodging resistance under high-density planting conditions and can be used to develop maize cultivation practices and lodging-resistant maize cultivars.展开更多
(CoCrFeNi)95Nb5 high entropy alloy(HEA)coatings were successfully fabricated on a substrate of Q235 steel by laser cladding technology.These(CoCrFeNi)95Nb5 HEA coatings possess excellent properties,particularly corros...(CoCrFeNi)95Nb5 high entropy alloy(HEA)coatings were successfully fabricated on a substrate of Q235 steel by laser cladding technology.These(CoCrFeNi)95Nb5 HEA coatings possess excellent properties,particularly corrosion resistance,which is clearly superior to that of some typical bulk HEA and common engineering alloys.In order to obtain appropriate laser cladding preparation process parameters,the effects of laser energy density on the microstructure,microhardness,and corrosion resistance of(CoCrFeNi)95Nb5 HEA coating were closely studied.Results showed that as the laser energy density increases,precipitation of the Laves phase in(CoCrFeNi)95Nb5 HEA coating gradually decreases,and diffusion of the Fe element in the substrate intensifies,affecting the integrity of the(CoCrFeNi)95Nb5 HEA.This decreases the microhardness of(CoCrFeNi)95Nb5 HEA coatings.Moreover,the relative content of Cr2O3,Cr(OH)3,and Nb2O5 in the surface passive film of the coating decreases with increasing energy density,causing corrosion resistance to decrease.This study demonstrates the controllability of a high-performance HEA coating using laser cladding technology,which has significance for the laser cladding preparation of other CoCrFeNi-system HEA coatings.展开更多
As an important geophysical tool,high density electrical technique infers the underground geological structures by processing and inverting the apparent resistivity data.Currently,the false anomalies have been frequen...As an important geophysical tool,high density electrical technique infers the underground geological structures by processing and inverting the apparent resistivity data.Currently,the false anomalies have been frequently occurred in the graph of apparent resistivity pseudo-section or inverted geoelectrical section obtained from high-density electrical technique,and are difficult to remove.In this study,the authors explain the mechanism of the false anomalies and put forward the horizontal differential field method to identify the false anomalies.Based on the analysis of modeling results,this method is applied in the surveying data in Xinlei Quarry of Jiuquan,and the results confirm the effectiveness of the horizontal differential field method.展开更多
Objectives: To assess the associations of high density lipoprotein cholesterol (HDL-C) and Framingham cardiovascular (CVD) with diabetic retinopathy (DR). Methods: A cross-sectional study of random sample of 200 T2DM ...Objectives: To assess the associations of high density lipoprotein cholesterol (HDL-C) and Framingham cardiovascular (CVD) with diabetic retinopathy (DR). Methods: A cross-sectional study of random sample of 200 T2DM Central Africans. Sociobiographical, laboratory and eye examination main outcome measures were investigated using Tertiles of HDL-C (stratification = lowest 10% were the significant independent determinants for DR. In the highest HDL-C group, smoking status and 10-year Framingham risk ≥ 10% were the significantly independent determinants for DR. In 10-year Framingham risk ≥ 10% group, smoking status, insulin resistance and increasing levels of HDL-C were the significantly independent determinants for DR. Conclusion: DR and VD remain a public health problem in T2DM Central Africans. Some Central Africans with DR and VD appear to have higher HDL-C than T2DM Central Africans without DR and VD. HDL-C in T2DM patients with DR, may be tightly controlled by genetic factors (black Bantu ethnicity) than the other lipoproteins as reported among Indians, African-Americans, and Japanese individuals. The most preventable environmental risk factors for DR were smoking status, global cardiovascular disease risk, insulin resistance and oxidative stress.展开更多
In this study, we thoroughly examined the impact of heat treatments and hole count (p) on the properties of LnSrBaCu<sub>3</sub>O<sub>6+z</sub> (Ln = Eu, Sm, Nd) compounds. We focused on prepar...In this study, we thoroughly examined the impact of heat treatments and hole count (p) on the properties of LnSrBaCu<sub>3</sub>O<sub>6+z</sub> (Ln = Eu, Sm, Nd) compounds. We focused on preparation, X-ray diffraction with Rietveld refinement, AC susceptibility, DC resistivity measurements, and heat treatment effects. Two heat treatment types were applied: oxygen annealing [O] and argon annealing followed by oxygen annealing [AO]. As the rare earth Ln’s ionic radius increased, certain parameters notably changed. Specifically, c parameter, surface area S, and volume V increased, while critical temperature Tc and holes (p) in the CuO<sub>2</sub> plane decreased. The evolution of these parameters with rare earth Ln’s ionic radius in [AO] heat treatment is linear. Regardless of the treatment, the structure is orthorhombic for Ln = Eu, tetragonal for Ln = Nd, orthorhombic for Ln = Sm [AO], and pseudo-tetragonal for Sm [O]. The highest critical temperature is reached with Ln = Eu (Tc [AO] = 87.1 K). Notably, for each sample, Tc [AO] surpasses Tc [O]. Observed data stems from factors including rare earth ionic size, improved cationic and oxygen chain order, holes count p in Cu(2)O<sub>2</sub> planes, and in-phase purity of [AO] samples. Our research strives to clearly demonstrate that the density of holes (p) within the copper plane stands as a determinant impacting the structural, electrical, and superconducting properties of these samples. Meanwhile, the other aforementioned parameters contribute to shaping this density (p).展开更多
基金supported by projects funded by the China Postdoctoral Science Foundation(2019M663837 and 2021M701521)the National High-Tech Research and Development Programs of China(2013AA102902)the special fund for Agro-scientific Research in the Public Interest,China(201303104)。
文摘Lodging in maize leads to yield losses worldwide.In this study,we determined the effects of traditional and optimized nitrogen management strategies on culm morphological characteristics,culm mechanical strength,lignin content,root growth,lodging percentage and production in maize at a high plant density.We compared a traditional nitrogen(N)application rate of 300 kg ha–1(R)and an optimized N application rate of 225 kg ha^(–1)(O)under four N application modes:50%of N applied at sowing and 50%at the 10th-leaf stage(N1);100%of N applied at sowing(N2);40%of N applied at sowing,40%at the 10th-leaf stage and 20%at tasseling stage(N3);and 30%of N applied at sowing,30%at the 10th-leaf stage,20%at the tasseling stage,and 20%at the silking stage(N4).The optimized N rate(225 kg ha^(–1))significantly reduced internode lengths,plant height,ear height,center of gravity height and lodging percentage.The optimized N rate significantly increased internode diameters,filling degrees,culm mechanical strength,root growth and lignin content.The application of N in four split doses(N4)significantly improved culm morphological characteristics,culm mechanical strength,lignin content,and root growth,while it reduced internode lengths,plant height,ear height,center of gravity height and lodging percentage.Internode diameters,filling degrees,culm mechanical strength,lignin content,number and diameter of brace roots,root volume,root dry weight,bleeding safe and grain yield were significantly negatively correlated with plant height,ear height,center of gravity height,internode lengths and lodging percentage.In conclusion,treatment ON4 significantly reduced the lodging percentage by improving the culm morphological characteristics,culm mechanical strength,lignin content,and root growth,so it improved the production of the maize crop at a high plant density.
基金supported by the Institute of Seismology Foundation, China Earthquake Administration (201326126)
文摘The research about subsurface characteristics by using transient electromagnetic method(TEM) and high density resistivity method(HDRM) were already conducted in Ordos. The objective of this research is to detect coalmine goaf areas based on rock resistivity. The data processing using wavelet transform, three point smoothing, RES2 DINV and Maxwell processing software to obtain 2D resistivity structure. The results showed that the layers with maximum resistivity values(30e33 U m on Line 1, 30e31 U m on Line 2, 32e40 U m on Line3) are founded at station 1e7, and 14e20 on Line 1,13e18 on Line 2, and 8e13 and 16e20 on Line 3 which is predicted as goaf layer, and the minimum resistivity values(20e26 U m of TEM, 45e75 U m of HDRM) at the other layers. This resistivity difference was caused by the geology and characteristics of the study area which is located close by the cleugh with rich coal, so the goaf area distinguishable with aquifer layer and coal seam. The results were also significant accidents and serious destruction of ecological environment.
文摘The detecting examples using the high density resistivity method, about the evaluation of containing water characteristic from the floor rock and the height of overburden failure, were given. It expresses that the high density resistivity method has good effect with strong maneuverability and continuous observing section during the prevention and cure for mine water disaster. At the same time, the article pointed out that the study of space data inversion and dynamic watching technology about the high density resistivity method must be enhanced in the future because of special condition of data collecting in mine.
文摘High-density resistivity method is a new, efficient electrical prospecting method, which can complete a two-dimensional (vertical and horizontal) prospecting process, possesses certain imaging functions for the geo-electric structure, and integrates electric profiling method with electric sounding method together. In this paper, the basic principle, data processing, and result explanation and inference of high- density resistivity method are introduced by taking the application of high-density resistivity method to the prospecting project in the slope of Gongchangling Open Pit, Liaoyang. The result of the prospecting result map analysis showed that the prospecting result was basically in line with the actual situation and proved the great significance of high-density resistivity method to the evaluation on the slope stability of Gongchangling open pit.
文摘Based on the relationship between the diameter and buried depth of goal, the authors establish the forward modeling by Res2dmod and inverse the model by Res2dinv. Thus, three kinds of models are obtained : the model of single resistivity anomalous body, model of double different distance resistivity anomalous body, and model of layered resistivity anomalous body. Using forward and inversion, the image of detection is simulated, and the reliability is proved by comparing with the engineering examples.
基金supported by the National Basic Research Program of China (973 Program, 2015CB150401)the National Key Research and Development Program of China (2016YFD0300101)the National Maize Industrial Technology System, China
文摘Increasing plant density is an effective way to enhance maize yield, but often increases lodging rate and severity, significantly elevating the risk and cost of maize production. Therefore, lodging is a major factor restricting future increases in maize yield through high-density planting. This paper reviewed previous research on the relationships between maize lodging rate and plant morphology, mechanical strength of stalks, anatomical and biochemical characteristics of stalks, root characteristics, damage from pests and diseases, environmental factors, and genomic characteristics. The effects of planting density on these factors and explored possible ways to improve lodging resistance were also analyzed in this paper. The results provide a basis for future research on increasing maize lodging resistance under high-density planting conditions and can be used to develop maize cultivation practices and lodging-resistant maize cultivars.
基金This work was financially supported by the National Key R&D Program of China(No.2018YFB0606104)the National Natural Science Foundation of China(No.51702332).
文摘(CoCrFeNi)95Nb5 high entropy alloy(HEA)coatings were successfully fabricated on a substrate of Q235 steel by laser cladding technology.These(CoCrFeNi)95Nb5 HEA coatings possess excellent properties,particularly corrosion resistance,which is clearly superior to that of some typical bulk HEA and common engineering alloys.In order to obtain appropriate laser cladding preparation process parameters,the effects of laser energy density on the microstructure,microhardness,and corrosion resistance of(CoCrFeNi)95Nb5 HEA coating were closely studied.Results showed that as the laser energy density increases,precipitation of the Laves phase in(CoCrFeNi)95Nb5 HEA coating gradually decreases,and diffusion of the Fe element in the substrate intensifies,affecting the integrity of the(CoCrFeNi)95Nb5 HEA.This decreases the microhardness of(CoCrFeNi)95Nb5 HEA coatings.Moreover,the relative content of Cr2O3,Cr(OH)3,and Nb2O5 in the surface passive film of the coating decreases with increasing energy density,causing corrosion resistance to decrease.This study demonstrates the controllability of a high-performance HEA coating using laser cladding technology,which has significance for the laser cladding preparation of other CoCrFeNi-system HEA coatings.
文摘As an important geophysical tool,high density electrical technique infers the underground geological structures by processing and inverting the apparent resistivity data.Currently,the false anomalies have been frequently occurred in the graph of apparent resistivity pseudo-section or inverted geoelectrical section obtained from high-density electrical technique,and are difficult to remove.In this study,the authors explain the mechanism of the false anomalies and put forward the horizontal differential field method to identify the false anomalies.Based on the analysis of modeling results,this method is applied in the surveying data in Xinlei Quarry of Jiuquan,and the results confirm the effectiveness of the horizontal differential field method.
文摘Objectives: To assess the associations of high density lipoprotein cholesterol (HDL-C) and Framingham cardiovascular (CVD) with diabetic retinopathy (DR). Methods: A cross-sectional study of random sample of 200 T2DM Central Africans. Sociobiographical, laboratory and eye examination main outcome measures were investigated using Tertiles of HDL-C (stratification = lowest 10% were the significant independent determinants for DR. In the highest HDL-C group, smoking status and 10-year Framingham risk ≥ 10% were the significantly independent determinants for DR. In 10-year Framingham risk ≥ 10% group, smoking status, insulin resistance and increasing levels of HDL-C were the significantly independent determinants for DR. Conclusion: DR and VD remain a public health problem in T2DM Central Africans. Some Central Africans with DR and VD appear to have higher HDL-C than T2DM Central Africans without DR and VD. HDL-C in T2DM patients with DR, may be tightly controlled by genetic factors (black Bantu ethnicity) than the other lipoproteins as reported among Indians, African-Americans, and Japanese individuals. The most preventable environmental risk factors for DR were smoking status, global cardiovascular disease risk, insulin resistance and oxidative stress.
文摘In this study, we thoroughly examined the impact of heat treatments and hole count (p) on the properties of LnSrBaCu<sub>3</sub>O<sub>6+z</sub> (Ln = Eu, Sm, Nd) compounds. We focused on preparation, X-ray diffraction with Rietveld refinement, AC susceptibility, DC resistivity measurements, and heat treatment effects. Two heat treatment types were applied: oxygen annealing [O] and argon annealing followed by oxygen annealing [AO]. As the rare earth Ln’s ionic radius increased, certain parameters notably changed. Specifically, c parameter, surface area S, and volume V increased, while critical temperature Tc and holes (p) in the CuO<sub>2</sub> plane decreased. The evolution of these parameters with rare earth Ln’s ionic radius in [AO] heat treatment is linear. Regardless of the treatment, the structure is orthorhombic for Ln = Eu, tetragonal for Ln = Nd, orthorhombic for Ln = Sm [AO], and pseudo-tetragonal for Sm [O]. The highest critical temperature is reached with Ln = Eu (Tc [AO] = 87.1 K). Notably, for each sample, Tc [AO] surpasses Tc [O]. Observed data stems from factors including rare earth ionic size, improved cationic and oxygen chain order, holes count p in Cu(2)O<sub>2</sub> planes, and in-phase purity of [AO] samples. Our research strives to clearly demonstrate that the density of holes (p) within the copper plane stands as a determinant impacting the structural, electrical, and superconducting properties of these samples. Meanwhile, the other aforementioned parameters contribute to shaping this density (p).