The Gas-Oil Ratio(GOR)is a crucial production parameter in oil reservoirs.An increase in GOR results in higher gas production and lower oil production,potentially leading to well shut-ins due to economic infeasibility...The Gas-Oil Ratio(GOR)is a crucial production parameter in oil reservoirs.An increase in GOR results in higher gas production and lower oil production,potentially leading to well shut-ins due to economic infeasibility.This study focuses on a real fractured oil field that requires urgent production operations to reduce the producing GOR.In this study,the static model for the field was developed using commercial software,involving steps such as data collection,fault modeling,meshing,and statistical analysis to prepare for dynamic simulation.The dynamic model incorporates geometry,gridding,and rock properties from the static model,utilizing a dual-porosity approach for the naturally fractured reservoir and the Peng-Robinson equation for fluid phase behavior.Initial reservoir conditions,production history,and rock-fluid interactions were defined,with relative permeability curves indicating a water-wet reservoir and low critical gas saturation affecting the GOR.To better understand the relationship between reservoir and production parameters,a detailed sensitivity analysis was performed using the Response Surface Methodology(RSM).Following the sensitivity analysis,a history matching process was conducted using the Designed Exploration and Controlled Evolution(DECE)optimizer to validate the model for future forecasts.Six operational scenarios were defined to decrease the production GOR and enhance final recovery from the field.The results indicate that the water injection scenario is effective in preventing the GOR increase by maintaining reservoir pressure,thereby sustaining production over a longer period.This scenario also improves oil recovery by approximately 6%compared to the base case.Finally,optimization was carried out using the DECE optimizer for each scenario to fine-tune the operational parameters.The goal was to maximize oil revenue for each scenario during the optimization process.This study stands out as one of the few that provides a comprehensive analysis of production behavior and development planning for a real fractured reservoir with high producing GOR.展开更多
The objective of this study is to investigate the factors that contribute to brittleness and to identify strategies for mitigating these factors in populations with varying degrees of thermal vulnerability,based on th...The objective of this study is to investigate the factors that contribute to brittleness and to identify strategies for mitigating these factors in populations with varying degrees of thermal vulnerability,based on the potential impact of extreme heat exposure on human survival and habitability.The physiological condition of lower adaptability to high temperature environments and the assessment of individuals who may have higher tolerance time in high temperature environments based on spatial perspectives suggest the need for targeted spatial optimization strategies for commuters and disadvantaged populations.This is demonstrated through a case study.These optimization measures encompass a variety of aspects,including the integration of transportation systems,the expansion of grey space corridors,the improvement of green space layout,and the implantation of green infrastructure.The study aims to reduce the exposure time of thermally vulnerable individuals to high temperature environments through spatial optimization strategies,to enhance the resilience of urban green spaces to heat stress,and to reduce the probability of heat-wave occurrence.展开更多
The high temperature deformation behaviors of α+β type titanium alloy TC11 (Ti-6.5Al-3.5Mo-1.5Zr-0.3Si) with coarse lamellar starting microstructure were investigated based on the hot compression tests in the tem...The high temperature deformation behaviors of α+β type titanium alloy TC11 (Ti-6.5Al-3.5Mo-1.5Zr-0.3Si) with coarse lamellar starting microstructure were investigated based on the hot compression tests in the temperature range of 950-1100 ℃ and the strain rate range of 0.001-10 s-1. The processing maps at different strains were then constructed based on the dynamic materials model, and the hot compression process parameters and deformation mechanism were optimized and analyzed, respectively. The results show that the processing maps exhibit two domains with a high efficiency of power dissipation and a flow instability domain with a less efficiency of power dissipation. The types of domains were characterized by convergence and divergence of the efficiency of power dissipation, respectively. The convergent domain in a+fl phase field is at the temperature of 950-990 ℃ and the strain rate of 0.001-0.01 s^-1, which correspond to a better hot compression process window of α+β phase field. The peak of efficiency of power dissipation in α+β phase field is at 950 ℃ and 0.001 s 1, which correspond to the best hot compression process parameters of α+β phase field. The convergent domain in β phase field is at the temperature of 1020-1080 ℃ and the strain rate of 0.001-0.1 s^-l, which correspond to a better hot compression process window of β phase field. The peak of efficiency of power dissipation in ℃ phase field occurs at 1050 ℃ over the strain rates from 0.001 s^-1 to 0.01 s^-1, which correspond to the best hot compression process parameters of ,8 phase field. The divergence domain occurs at the strain rates above 0.5 s^-1 and in all the tested temperature range, which correspond to flow instability that is manifested as flow localization and indicated by the flow softening phenomenon in stress-- strain curves. The deformation mechanisms of the optimized hot compression process windows in a+β and β phase fields are identified to be spheroidizing and dynamic recrystallizing controlled by self-diffusion mechanism, respectively. The microstructure observation of the deformed specimens in different domains matches very well with the optimized results.展开更多
The basic sintering characteristics of Yandi ore from Australia, including assimilation ability, liquid phase fluidity, self-strength of bonding phase, forming ability of silico ferrite of calcium and aluminum (SFCA...The basic sintering characteristics of Yandi ore from Australia, including assimilation ability, liquid phase fluidity, self-strength of bonding phase, forming ability of silico ferrite of calcium and aluminum (SFCA), and so on, were investigated in detail. Besides, the high temperature behavior and function of sintering were obtained. As a result, the techniques for ore-proportioning in sintering were obtained. The results show that Yandi ore possessing higher assimilation ability, better liquid phase fluidity, lower self-strength of bonding phase, and better forming ability of SFCA, should be mixed with iron ores whose properties are opposite to those of Yandi ore. In the optimization of sintering ore-proportioning, Yandi ore, whose price is relatively low, can be mixed as high as 40wt%.展开更多
High pressure die casting(HPDC) is a kind of near net shape manufacturing method. However, air entrapment in HPDC parts has serious effects upon the casting quality. In order to reduce the air entrapment defects in a ...High pressure die casting(HPDC) is a kind of near net shape manufacturing method. However, air entrapment in HPDC parts has serious effects upon the casting quality. In order to reduce the air entrapment defects in a AlSi10 MnMg alloy thin-wall longitudinal load-bearing beam produced by HPDC, different gating systems were designed and simulated by software Flow-3D to evaluate the entrapped air. Simulation results showed that when the beam is produced by the original designed gating system with a middle ingate, there exist obvious air entrapments in the critical area; the volume of air entrapment was reduced by replacing the middle ingate to an overflow well, and the filling of molten metal became more stable. When the middle ingate was removed for further improvement, the volume of air entrapment was decreased drastically. The parts with glossy surface and good microstructure have been successfully produced by using the final optimized gating system based on simulation results.展开更多
AIM: To evaluate the effect of different lens constant optimization methods on the accuracy of intraocular lens(IOL) power calculation formulas for highly myopic eyes.METHODS: This study comprised 108 eyes of 94 conse...AIM: To evaluate the effect of different lens constant optimization methods on the accuracy of intraocular lens(IOL) power calculation formulas for highly myopic eyes.METHODS: This study comprised 108 eyes of 94 consecutive patients with axial length(AL) over 26 mm undergoing phacoemulsification and implantation of a Rayner(Hove, UK) 920H IOL. Formulas were evaluated using the following lens constants: manufacturer’s lens constant, User Group for Laser Interference Biometry(ULIB) constant, and optimized constant for long eyes. Results were compared with Barrett Universal II formula, original Wang-Koch AL adjustment method, and modified Wang-Koch AL adjustment method. The outcomes assessed were mean absolute error(MAE) and percentage of eyes with IOL prediction errors within ±0.25, ±0.50, and ±1.0 diopter(D). The nonparametric method, Friedman test, was used to compare MAE performance among constants.RESULTS: Optimized constants could significantly reduce the MAE of SRK/T, Hoffer Q, and Holladay 1 formulas compared with manufacturer’s lens constant, whereas the percentage of eyes with IOL prediction errors within ±0.25, ±0.50, and ±1.0 D had no statistically significant differences. Optimized lens constant for long eyes alone showed non-significant refractive advantages over the ULIB constant. Barrett Universal II formula and formulas with AL adjustment showed significantly higher accuracy in highly myopic eyes(P<0.001). CONCLUSION: Lens constant optimization for the subset of long eyes reduces the refractive error only to a limited extent for highly myopic eyes.展开更多
We developed a mathematical optimization model coupling chemical compositions and high-temperature characteristics of sintering materials, targeting the best quality and lowest cost. The simplex algorithm was adopted ...We developed a mathematical optimization model coupling chemical compositions and high-temperature characteristics of sintering materials, targeting the best quality and lowest cost. The simplex algorithm was adopted to solve this model. Four kinds of imported iron ores, two kinds of Chinese iron ore concentrates, and two kinds of fluxes were selected to verify both the model and the algorithm. The results confirmed the possibility of considering both chemical compositions and high-temperature characteristics of iron ores in the optimization model. This model provides a technical roadmap to obtain a precise mathematical correlation between the lowest cost and the grade of iron in sinters based on the condition of given raw materials, which can provide a reference to adjust the grade of iron in the sintering process for enterprise.展开更多
A carrier tracking loop which can adjust the loop parameters adaptively is proposed for high dynamic application. Three modules, called the α-β-γT filter model, adaptive loop structure mod- el and adaptive loop ban...A carrier tracking loop which can adjust the loop parameters adaptively is proposed for high dynamic application. Three modules, called the α-β-γT filter model, adaptive loop structure mod- el and adaptive loop bandwidth model respectively, are added in the presented tracking loop com- pared with the traditional carrier tracking loop based on the second-order frequency lock loop (FLL) assisting third-order phase lock loop (PLL) loop filter. And the optimization methods for the track- ing bandwidth and the carrier loop order are analyzed. The real-time estimation methods of the dy- namic parameters, the velocity, acceleration and jerk along the line of sight (LOS) between the sat- ellite and the receiver' s antenna, and the measurement parameters are discussed based on the pres- ented α-β-γ filter algorithm. A method is introduced to improve the filter' s dynamic response to meet high dynamic application by self-adjusted α-β-γ filter coefficient used in the tracking loop. The performance of three cases with different carrier tracking loop is compared by simulation.展开更多
Response surface methodology (RSM) was employed in the present work and a second orderquadratic equation for high hydrostatic pressure (HHP) inactivation was built. Theadequacy of the model equation for predicting the...Response surface methodology (RSM) was employed in the present work and a second orderquadratic equation for high hydrostatic pressure (HHP) inactivation was built. Theadequacy of the model equation for predicting the optimum response values was verifiedeffectively by the validation data. Effects of temperature, pressure, and pressureholding time on HHP inactivation of Escherichia coli ATCC 8739 were explored. Byanalyzing the response surface plots and their corresponding contour plots as well assolving the quadratic equation, the optimum process parameters for inactivation E. coliof six log cycles were obtained as: temperature 32.2℃, pressure 346.4 MPa, and pressureholding time 12.6min.展开更多
An optimal medium (300 g·L^-1 initial glucose) comprising 6.3 mmol·L^-1 Mg2+, 5.0 mmol·L^-1 Ca2+, 15.0 g·L^-1 peptone and 21.5 g·L^-1 yeast extract was determined by uniform design to impr...An optimal medium (300 g·L^-1 initial glucose) comprising 6.3 mmol·L^-1 Mg2+, 5.0 mmol·L^-1 Ca2+, 15.0 g·L^-1 peptone and 21.5 g·L^-1 yeast extract was determined by uniform design to improve very high gravity (VHG) ethanol fermentation, showing over 30% increase in final ethanol (from 13.1% to 17.1%, by volume), 29% decrease in fermentation time (from 84 to 60 h), 80% increase in biomass formation and 26% increase in glucose utilization. Experiments also revealed physiological aspects linked to the fermentation enhancements. Compared to the control, trehalose in the cells grown in optimal fermentation medium increased 17.9-, 2.8-, 1.9-, 1.8- and 1.9-fold at the fermentation time of 12, 24, 36, 48 and 60 h, respectively. Its sharp rise at the early stage of fermentation when there was a considerable osmotic stress suggested that trehalose played an important role in promoting fermentation. Meanwhile, at the identical five fermentation time, the plasma membrane ATPase activity of the cells grown in optimal medium was 2.3, 1.8, 1.6, 1.5 and 1.3 times that of the control, respectively. Their disparities in enzymatic activity became wider when the glucose levels were dramatically changed for ethanol production, suggesting this enzyme also contributed to the fermentation improvements. Thus, medium optimization for VHG ethanol fermentation was found to trigger the increased yeast trehalose accumulation and plasma membrane ATPase activity.展开更多
In order to improve the in-flight characteristics of the atomizing droplets during high velocity wire arc spraying (HVAS), some changes have been operated on the original design of the HVAS gun configuration. A compar...In order to improve the in-flight characteristics of the atomizing droplets during high velocity wire arc spraying (HVAS), some changes have been operated on the original design of the HVAS gun configuration. A comparative study was carried out to investigate the microstructure and properties of the coatings produced by the original design spraying gun and the modified one, using 3Cr13 wires of 3 mm in diameter. The characteristics of their jets were examined during spraying. The results indicate that, the included angle between the two wires and the distance from the nozzle to the meeting point of the two vires may have a strong influence on the characteristics of the in-flight droplets and then the coatings. The jet divergence is found to be lower than that of the original one (about 12° against 25°). By modified gun, the adhesion strength, the microhardness and porosity of the coating deposited by modified gun are increased by 39% and 9% respectively. And the porosity of the coatings is decreased by 57%.展开更多
In order to improve turbine internal efficiency and lower manufacturing cost, a new highly loaded rotating blade has been developed. The 3D optimization design method based on artificial neural network and genetic alg...In order to improve turbine internal efficiency and lower manufacturing cost, a new highly loaded rotating blade has been developed. The 3D optimization design method based on artificial neural network and genetic algorithm is adopted to construct the blade shape. The blade is stacked by the center of gravity in radial direction with five sections. For each blade section, independent suction and pressure sides are constructed from the camber line using Bezier curves. Three-dimensional flow analysis is carried out to verify the performance of the new blade. It is found that the new blade has improved the blade performance by 0.5%. Consequently, it is verified that the new blade is effective to improve the turbine internal efficiency and to lower the turbine weight and manufacturing cost by reducing the blade number by about 15%.展开更多
The structure and working principle of a self-deigned high pressure electronic pneumatic pressure reducing valve (EPPRV) with slide pilot are introduced.The resistance value formulas and the relationship between the r...The structure and working principle of a self-deigned high pressure electronic pneumatic pressure reducing valve (EPPRV) with slide pilot are introduced.The resistance value formulas and the relationship between the resistance and pressure of three typical pneumatic resistances are obtained.Then,the method of static characteristics analysis only considering pneumatic resistances is proposed,the resistance network from gas supply to load is built up,and the mathematical model is derived from the flow rate formulas and flow conservation equations,with the compressibility of high pressure gas and temperature drop during the expansion considered in the model.Finally,the pilot spool displacement of 1.5 mm at an output pressure of 15MPa and the enlarging operating stroke of the pilot spool are taken as optimization targets,and the optimization is carried out based on genetic algorithm and the model mentioned above.The results show that the static characteristics of the EPPRV are significantly improved.The idea of static characteristics analysis and optimization based on pneumatic resistance network is valuable for the design of pneumatic components or system.展开更多
Two of the main challenges in optimal control are solving problems with state-dependent running costs and developing efficient numerical solvers that are computationally tractable in high dimensions.In this paper,we p...Two of the main challenges in optimal control are solving problems with state-dependent running costs and developing efficient numerical solvers that are computationally tractable in high dimensions.In this paper,we provide analytical solutions to certain optimal control problems whose running cost depends on the state variable and with constraints on the control.We also provide Lax-Oleinik-type representation formulas for the corresponding Hamilton-Jacobi partial differential equations with state-dependent Hamiltonians.Additionally,we present an efficient,grid-free numerical solver based on our representation formulas,which is shown to scale linearly with the state dimension,and thus,to overcome the curse of dimensionality.Using existing optimization methods and the min-plus technique,we extend our numerical solvers to address more general classes of convex and nonconvex initial costs.We demonstrate the capabilities of our numerical solvers using implementations on a central processing unit(CPU)and a field-programmable gate array(FPGA).In several cases,our FPGA implementation obtains over a 10 times speedup compared to the CPU,which demonstrates the promising performance boosts FPGAs can achieve.Our numerical results show that our solvers have the potential to serve as a building block for solving broader classes of high-dimensional optimal control problems in real-time.展开更多
Optimization of the content of tricalcium silicate(C 3 S)of high cementing clinker was investigated.The content of free-CaO(f-CaO),mineral composite,the content of C 3 S in the clinker and the hydration product we...Optimization of the content of tricalcium silicate(C 3 S)of high cementing clinker was investigated.The content of free-CaO(f-CaO),mineral composite,the content of C 3 S in the clinker and the hydration product were analyzed by chemical analysis and X-ray diffraction(XRD)."K Value"method of QXRD was selected as a quantitative analysis way to measure the content of C 3 S,and the strength of cement paste was determined.The results show that at a water cement ratio of 0.29,the strength of cement paste with 73%C 3 S can be up to 97.5 MPa at 28 days age.The strength at 28 d of cement with 73%C 3 S is 16%higher than that with 78%C 3 S at water requirement for normal consistency.The relationship between the strength of high cementing Portland cement and the content of C 3 S in the clinker is nonlinear.According to the strength of cement paste,the optimal content of C 3 S in cement clinker is around 73%in this paper.展开更多
In fossil energy pollution is serious and the“double carbon”goal is being promoted,as a symbol of fresh energy in the electrical system,solar and wind power have an increasing installed capacity,only conventional un...In fossil energy pollution is serious and the“double carbon”goal is being promoted,as a symbol of fresh energy in the electrical system,solar and wind power have an increasing installed capacity,only conventional units obviously can not solve the new energy as the main body of the scheduling problem.To enhance the systemscheduling ability,based on the participation of thermal power units,incorporate the high energy-carrying load of electro-melting magnesiuminto the regulation object,and consider the effects on the wind unpredictability of the power.Firstly,the operating characteristics of high energy load and wind power are analyzed,and the principle of the participation of electrofusedmagnesiumhigh energy-carrying loads in the elimination of obstructedwind power is studied.Second,a two-layer optimization model is suggested,with the objective function being the largest amount of wind power consumed and the lowest possible cost of system operation.In the upper model,the high energy-carrying load regulates the blocked wind power,and in the lower model,the second-order cone approximation algorithm is used to solve the optimizationmodelwithwind power uncertainty,so that a two-layer optimizationmodel that takes into account the regulation of the high energy-carrying load of the electrofused magnesium and the uncertainty of the wind power is established.Finally,the model is solved using Gurobi,and the results of the simulation demonstrate that the suggested model may successfully lower wind abandonment,lower system operation costs,increase the accuracy of day-ahead scheduling,and lower the final product error of the thermal electricity unit.展开更多
This paper presents a method for solving the attitude control problem of high altitude airship (HAA) with aerodynamic fin and vectored thruster control. The algorithm is based on the synthetic optimization of dynamic ...This paper presents a method for solving the attitude control problem of high altitude airship (HAA) with aerodynamic fin and vectored thruster control. The algorithm is based on the synthetic optimization of dynamic performance and energy consumption of airship. Firstly, according to the system overall configuration, the dynamic model of HAA was established and the HAA linearized model of longitudinal plane motion was obtained. Secondly, using the classic PID control theory, the HAA attitude control system was designed. Thirdly, through analyzing the dynamic performance of airship with fin or vectored thruster control, the synthetic performance index function with different weighting functions was determined. By means of optimizing the obtained performance index function, the attitude control of high altitude airship with good dynamic performance and low energy consumption was achieved. Finally, attitude control allocation strategy was designed for the airship station keeping at an altitude of 22 km. The simulation experiment proved the validity of the proposed algorithm.展开更多
Optimization of the high power single-lateral-mode double-trench ridge waveguide semiconductor laser based on InGaAsP/InP quantum-well heterostructures with a separate confinement layer is reported. Two different wave...Optimization of the high power single-lateral-mode double-trench ridge waveguide semiconductor laser based on InGaAsP/InP quantum-well heterostructures with a separate confinement layer is reported. Two different waveguide structures of Fabry-Perot lasers emitting at a wavelength of 1.55 μm are fabricated. The influence of an effective lateral refractive index step on the maximum output power is investigated. A cw single mode output power of 165mW is obtained for a 1-mm-long uncoated laser.展开更多
In order to analyze the effects of forward-swept angle and skin ply-orientation on the static and dynamic aeroelastic characteristics, the aeroelastic modeling and calculation for high-aspect-ratio composite wings wit...In order to analyze the effects of forward-swept angle and skin ply-orientation on the static and dynamic aeroelastic characteristics, the aeroelastic modeling and calculation for high-aspect-ratio composite wings with different forward-swept angles and skin ply-orientation are performed. This paper presents the results of a design study aiming to optimize wings with typical forward-swept angles and skin ply-orientation in an aeroelastic way by using the genetic/sensitivity-based hybrid algorithm. Under the conditions of satiated multiple constraints including strength, displacements, divergence speeds and flutter speeds, the studies are carried out in a bid to minimize the structural weight of a wing with the lay-up thicknesses of wing components as design variabies. In addition, the effects of the power of spanwise variation function of lay-up thicknesses of skins and iugs on the optimized weights are also analyzed.展开更多
With better understanding of the quality and physico-mechanical properties of rocks of dam foundation,and the physico-mechanical properties and structure design of arch dam in association with the foundation excavatio...With better understanding of the quality and physico-mechanical properties of rocks of dam foundation,and the physico-mechanical properties and structure design of arch dam in association with the foundation excavation of Xiluodu arch dam,the excavation optimization design was proposed for the foundation surface on the basis of feasibility study.Common analysis and numerical analysis results demonstrated the feasibility of using the weakly weathered rocks III1and III2as the foundation surface of super-high arch dam.In view of changes in the geological conditions at the dam foundation along the riverbed direction,the design of extending foundation surface excavation area and using consolidating grouting and optimizing structure of dam bottom was introduced,allowing for harmonization of the arch dam and foundation.Three-dimensional(3D)geomechanics model test and fi nite element analysis results indicated that the dam body and foundation have good overload stability and high bearing capacity.The monitoring data showed that the behaviors of dam and foundation correspond with the designed patterns in the construction period and the initial operation period.展开更多
文摘The Gas-Oil Ratio(GOR)is a crucial production parameter in oil reservoirs.An increase in GOR results in higher gas production and lower oil production,potentially leading to well shut-ins due to economic infeasibility.This study focuses on a real fractured oil field that requires urgent production operations to reduce the producing GOR.In this study,the static model for the field was developed using commercial software,involving steps such as data collection,fault modeling,meshing,and statistical analysis to prepare for dynamic simulation.The dynamic model incorporates geometry,gridding,and rock properties from the static model,utilizing a dual-porosity approach for the naturally fractured reservoir and the Peng-Robinson equation for fluid phase behavior.Initial reservoir conditions,production history,and rock-fluid interactions were defined,with relative permeability curves indicating a water-wet reservoir and low critical gas saturation affecting the GOR.To better understand the relationship between reservoir and production parameters,a detailed sensitivity analysis was performed using the Response Surface Methodology(RSM).Following the sensitivity analysis,a history matching process was conducted using the Designed Exploration and Controlled Evolution(DECE)optimizer to validate the model for future forecasts.Six operational scenarios were defined to decrease the production GOR and enhance final recovery from the field.The results indicate that the water injection scenario is effective in preventing the GOR increase by maintaining reservoir pressure,thereby sustaining production over a longer period.This scenario also improves oil recovery by approximately 6%compared to the base case.Finally,optimization was carried out using the DECE optimizer for each scenario to fine-tune the operational parameters.The goal was to maximize oil revenue for each scenario during the optimization process.This study stands out as one of the few that provides a comprehensive analysis of production behavior and development planning for a real fractured reservoir with high producing GOR.
基金by General Project of Natural Science Foundation of Beijing City(8202017)Beijing Urban Governance Research Base of North China University of Technology(2024CSZL07).
文摘The objective of this study is to investigate the factors that contribute to brittleness and to identify strategies for mitigating these factors in populations with varying degrees of thermal vulnerability,based on the potential impact of extreme heat exposure on human survival and habitability.The physiological condition of lower adaptability to high temperature environments and the assessment of individuals who may have higher tolerance time in high temperature environments based on spatial perspectives suggest the need for targeted spatial optimization strategies for commuters and disadvantaged populations.This is demonstrated through a case study.These optimization measures encompass a variety of aspects,including the integration of transportation systems,the expansion of grey space corridors,the improvement of green space layout,and the implantation of green infrastructure.The study aims to reduce the exposure time of thermally vulnerable individuals to high temperature environments through spatial optimization strategies,to enhance the resilience of urban green spaces to heat stress,and to reduce the probability of heat-wave occurrence.
基金Project (51005112) supported by the National Natural Science Foundation of ChinaProject (2010ZF56019) supported by the Aviation Science Foundation of China+1 种基金Project (GJJ11156) supported by the Education Commission of Jiangxi Province, ChinaProject(GF200901008) supported by the Open Fund of National Defense Key Disciplines Laboratory of Light Alloy Processing Science and Technology, China
文摘The high temperature deformation behaviors of α+β type titanium alloy TC11 (Ti-6.5Al-3.5Mo-1.5Zr-0.3Si) with coarse lamellar starting microstructure were investigated based on the hot compression tests in the temperature range of 950-1100 ℃ and the strain rate range of 0.001-10 s-1. The processing maps at different strains were then constructed based on the dynamic materials model, and the hot compression process parameters and deformation mechanism were optimized and analyzed, respectively. The results show that the processing maps exhibit two domains with a high efficiency of power dissipation and a flow instability domain with a less efficiency of power dissipation. The types of domains were characterized by convergence and divergence of the efficiency of power dissipation, respectively. The convergent domain in a+fl phase field is at the temperature of 950-990 ℃ and the strain rate of 0.001-0.01 s^-1, which correspond to a better hot compression process window of α+β phase field. The peak of efficiency of power dissipation in α+β phase field is at 950 ℃ and 0.001 s 1, which correspond to the best hot compression process parameters of α+β phase field. The convergent domain in β phase field is at the temperature of 1020-1080 ℃ and the strain rate of 0.001-0.1 s^-l, which correspond to a better hot compression process window of β phase field. The peak of efficiency of power dissipation in ℃ phase field occurs at 1050 ℃ over the strain rates from 0.001 s^-1 to 0.01 s^-1, which correspond to the best hot compression process parameters of ,8 phase field. The divergence domain occurs at the strain rates above 0.5 s^-1 and in all the tested temperature range, which correspond to flow instability that is manifested as flow localization and indicated by the flow softening phenomenon in stress-- strain curves. The deformation mechanisms of the optimized hot compression process windows in a+β and β phase fields are identified to be spheroidizing and dynamic recrystallizing controlled by self-diffusion mechanism, respectively. The microstructure observation of the deformed specimens in different domains matches very well with the optimized results.
文摘The basic sintering characteristics of Yandi ore from Australia, including assimilation ability, liquid phase fluidity, self-strength of bonding phase, forming ability of silico ferrite of calcium and aluminum (SFCA), and so on, were investigated in detail. Besides, the high temperature behavior and function of sintering were obtained. As a result, the techniques for ore-proportioning in sintering were obtained. The results show that Yandi ore possessing higher assimilation ability, better liquid phase fluidity, lower self-strength of bonding phase, and better forming ability of SFCA, should be mixed with iron ores whose properties are opposite to those of Yandi ore. In the optimization of sintering ore-proportioning, Yandi ore, whose price is relatively low, can be mixed as high as 40wt%.
基金supported by the Major Project of NSFC(51690161)the Student Innovation Program Major Project of Northeastern University(ZD1708)
文摘High pressure die casting(HPDC) is a kind of near net shape manufacturing method. However, air entrapment in HPDC parts has serious effects upon the casting quality. In order to reduce the air entrapment defects in a AlSi10 MnMg alloy thin-wall longitudinal load-bearing beam produced by HPDC, different gating systems were designed and simulated by software Flow-3D to evaluate the entrapped air. Simulation results showed that when the beam is produced by the original designed gating system with a middle ingate, there exist obvious air entrapments in the critical area; the volume of air entrapment was reduced by replacing the middle ingate to an overflow well, and the filling of molten metal became more stable. When the middle ingate was removed for further improvement, the volume of air entrapment was decreased drastically. The parts with glossy surface and good microstructure have been successfully produced by using the final optimized gating system based on simulation results.
基金Supported by National Natural Science Foundation of China(No.81770905)
文摘AIM: To evaluate the effect of different lens constant optimization methods on the accuracy of intraocular lens(IOL) power calculation formulas for highly myopic eyes.METHODS: This study comprised 108 eyes of 94 consecutive patients with axial length(AL) over 26 mm undergoing phacoemulsification and implantation of a Rayner(Hove, UK) 920H IOL. Formulas were evaluated using the following lens constants: manufacturer’s lens constant, User Group for Laser Interference Biometry(ULIB) constant, and optimized constant for long eyes. Results were compared with Barrett Universal II formula, original Wang-Koch AL adjustment method, and modified Wang-Koch AL adjustment method. The outcomes assessed were mean absolute error(MAE) and percentage of eyes with IOL prediction errors within ±0.25, ±0.50, and ±1.0 diopter(D). The nonparametric method, Friedman test, was used to compare MAE performance among constants.RESULTS: Optimized constants could significantly reduce the MAE of SRK/T, Hoffer Q, and Holladay 1 formulas compared with manufacturer’s lens constant, whereas the percentage of eyes with IOL prediction errors within ±0.25, ±0.50, and ±1.0 D had no statistically significant differences. Optimized lens constant for long eyes alone showed non-significant refractive advantages over the ULIB constant. Barrett Universal II formula and formulas with AL adjustment showed significantly higher accuracy in highly myopic eyes(P<0.001). CONCLUSION: Lens constant optimization for the subset of long eyes reduces the refractive error only to a limited extent for highly myopic eyes.
基金financially supported by the National Natural Science Foundation of China and Baosteel Group Co., Ltd., of Shanghai (U1260202)the Postdoctoral Science Foundation of China (2012T50045)
文摘We developed a mathematical optimization model coupling chemical compositions and high-temperature characteristics of sintering materials, targeting the best quality and lowest cost. The simplex algorithm was adopted to solve this model. Four kinds of imported iron ores, two kinds of Chinese iron ore concentrates, and two kinds of fluxes were selected to verify both the model and the algorithm. The results confirmed the possibility of considering both chemical compositions and high-temperature characteristics of iron ores in the optimization model. This model provides a technical roadmap to obtain a precise mathematical correlation between the lowest cost and the grade of iron in sinters based on the condition of given raw materials, which can provide a reference to adjust the grade of iron in the sintering process for enterprise.
基金Supported by the Ministerial Level Foundation(B222006060)
文摘A carrier tracking loop which can adjust the loop parameters adaptively is proposed for high dynamic application. Three modules, called the α-β-γT filter model, adaptive loop structure mod- el and adaptive loop bandwidth model respectively, are added in the presented tracking loop com- pared with the traditional carrier tracking loop based on the second-order frequency lock loop (FLL) assisting third-order phase lock loop (PLL) loop filter. And the optimization methods for the track- ing bandwidth and the carrier loop order are analyzed. The real-time estimation methods of the dy- namic parameters, the velocity, acceleration and jerk along the line of sight (LOS) between the sat- ellite and the receiver' s antenna, and the measurement parameters are discussed based on the pres- ented α-β-γ filter algorithm. A method is introduced to improve the filter' s dynamic response to meet high dynamic application by self-adjusted α-β-γ filter coefficient used in the tracking loop. The performance of three cases with different carrier tracking loop is compared by simulation.
文摘Response surface methodology (RSM) was employed in the present work and a second orderquadratic equation for high hydrostatic pressure (HHP) inactivation was built. Theadequacy of the model equation for predicting the optimum response values was verifiedeffectively by the validation data. Effects of temperature, pressure, and pressureholding time on HHP inactivation of Escherichia coli ATCC 8739 were explored. Byanalyzing the response surface plots and their corresponding contour plots as well assolving the quadratic equation, the optimum process parameters for inactivation E. coliof six log cycles were obtained as: temperature 32.2℃, pressure 346.4 MPa, and pressureholding time 12.6min.
基金Supported by the Natural Science Foundation of Fujian Province of China (E0810018)
文摘An optimal medium (300 g·L^-1 initial glucose) comprising 6.3 mmol·L^-1 Mg2+, 5.0 mmol·L^-1 Ca2+, 15.0 g·L^-1 peptone and 21.5 g·L^-1 yeast extract was determined by uniform design to improve very high gravity (VHG) ethanol fermentation, showing over 30% increase in final ethanol (from 13.1% to 17.1%, by volume), 29% decrease in fermentation time (from 84 to 60 h), 80% increase in biomass formation and 26% increase in glucose utilization. Experiments also revealed physiological aspects linked to the fermentation enhancements. Compared to the control, trehalose in the cells grown in optimal fermentation medium increased 17.9-, 2.8-, 1.9-, 1.8- and 1.9-fold at the fermentation time of 12, 24, 36, 48 and 60 h, respectively. Its sharp rise at the early stage of fermentation when there was a considerable osmotic stress suggested that trehalose played an important role in promoting fermentation. Meanwhile, at the identical five fermentation time, the plasma membrane ATPase activity of the cells grown in optimal medium was 2.3, 1.8, 1.6, 1.5 and 1.3 times that of the control, respectively. Their disparities in enzymatic activity became wider when the glucose levels were dramatically changed for ethanol production, suggesting this enzyme also contributed to the fermentation improvements. Thus, medium optimization for VHG ethanol fermentation was found to trigger the increased yeast trehalose accumulation and plasma membrane ATPase activity.
基金Project (50235030) supported by the National Natural Science Foundation of China
文摘In order to improve the in-flight characteristics of the atomizing droplets during high velocity wire arc spraying (HVAS), some changes have been operated on the original design of the HVAS gun configuration. A comparative study was carried out to investigate the microstructure and properties of the coatings produced by the original design spraying gun and the modified one, using 3Cr13 wires of 3 mm in diameter. The characteristics of their jets were examined during spraying. The results indicate that, the included angle between the two wires and the distance from the nozzle to the meeting point of the two vires may have a strong influence on the characteristics of the in-flight droplets and then the coatings. The jet divergence is found to be lower than that of the original one (about 12° against 25°). By modified gun, the adhesion strength, the microhardness and porosity of the coating deposited by modified gun are increased by 39% and 9% respectively. And the porosity of the coatings is decreased by 57%.
文摘In order to improve turbine internal efficiency and lower manufacturing cost, a new highly loaded rotating blade has been developed. The 3D optimization design method based on artificial neural network and genetic algorithm is adopted to construct the blade shape. The blade is stacked by the center of gravity in radial direction with five sections. For each blade section, independent suction and pressure sides are constructed from the camber line using Bezier curves. Three-dimensional flow analysis is carried out to verify the performance of the new blade. It is found that the new blade has improved the blade performance by 0.5%. Consequently, it is verified that the new blade is effective to improve the turbine internal efficiency and to lower the turbine weight and manufacturing cost by reducing the blade number by about 15%.
基金Project(50575202) supported by the National Natural Science Foundation of China
文摘The structure and working principle of a self-deigned high pressure electronic pneumatic pressure reducing valve (EPPRV) with slide pilot are introduced.The resistance value formulas and the relationship between the resistance and pressure of three typical pneumatic resistances are obtained.Then,the method of static characteristics analysis only considering pneumatic resistances is proposed,the resistance network from gas supply to load is built up,and the mathematical model is derived from the flow rate formulas and flow conservation equations,with the compressibility of high pressure gas and temperature drop during the expansion considered in the model.Finally,the pilot spool displacement of 1.5 mm at an output pressure of 15MPa and the enlarging operating stroke of the pilot spool are taken as optimization targets,and the optimization is carried out based on genetic algorithm and the model mentioned above.The results show that the static characteristics of the EPPRV are significantly improved.The idea of static characteristics analysis and optimization based on pneumatic resistance network is valuable for the design of pneumatic components or system.
基金supported by the DOE-MMICS SEA-CROGS DE-SC0023191 and the AFOSR MURI FA9550-20-1-0358supported by the SMART Scholarship,which is funded by the USD/R&E(The Under Secretary of Defense-Research and Engineering),National Defense Education Program(NDEP)/BA-1,Basic Research.
文摘Two of the main challenges in optimal control are solving problems with state-dependent running costs and developing efficient numerical solvers that are computationally tractable in high dimensions.In this paper,we provide analytical solutions to certain optimal control problems whose running cost depends on the state variable and with constraints on the control.We also provide Lax-Oleinik-type representation formulas for the corresponding Hamilton-Jacobi partial differential equations with state-dependent Hamiltonians.Additionally,we present an efficient,grid-free numerical solver based on our representation formulas,which is shown to scale linearly with the state dimension,and thus,to overcome the curse of dimensionality.Using existing optimization methods and the min-plus technique,we extend our numerical solvers to address more general classes of convex and nonconvex initial costs.We demonstrate the capabilities of our numerical solvers using implementations on a central processing unit(CPU)and a field-programmable gate array(FPGA).In several cases,our FPGA implementation obtains over a 10 times speedup compared to the CPU,which demonstrates the promising performance boosts FPGAs can achieve.Our numerical results show that our solvers have the potential to serve as a building block for solving broader classes of high-dimensional optimal control problems in real-time.
基金Funded by National Basic Research Program of China(No. 2009CB623100)National Eleventh Five-Year Scientific and Technical Support Plans(No.2006BAF02A24)+2 种基金Natural Science Fund for Colleges and Universities in Jiangsu Province(No.08KJB430006)Open Fund for the Key Laboratory of Inorganical and Composite Materials in Jiangsu Province(No. wjjqfhxc1200801)Innovation Fund of Doctoral Dissertation of Nanjing University of Technology(No.BSCX200705)
文摘Optimization of the content of tricalcium silicate(C 3 S)of high cementing clinker was investigated.The content of free-CaO(f-CaO),mineral composite,the content of C 3 S in the clinker and the hydration product were analyzed by chemical analysis and X-ray diffraction(XRD)."K Value"method of QXRD was selected as a quantitative analysis way to measure the content of C 3 S,and the strength of cement paste was determined.The results show that at a water cement ratio of 0.29,the strength of cement paste with 73%C 3 S can be up to 97.5 MPa at 28 days age.The strength at 28 d of cement with 73%C 3 S is 16%higher than that with 78%C 3 S at water requirement for normal consistency.The relationship between the strength of high cementing Portland cement and the content of C 3 S in the clinker is nonlinear.According to the strength of cement paste,the optimal content of C 3 S in cement clinker is around 73%in this paper.
基金funded by the National Key R&D Program of China,Grant Number 2019YFB1505400.
文摘In fossil energy pollution is serious and the“double carbon”goal is being promoted,as a symbol of fresh energy in the electrical system,solar and wind power have an increasing installed capacity,only conventional units obviously can not solve the new energy as the main body of the scheduling problem.To enhance the systemscheduling ability,based on the participation of thermal power units,incorporate the high energy-carrying load of electro-melting magnesiuminto the regulation object,and consider the effects on the wind unpredictability of the power.Firstly,the operating characteristics of high energy load and wind power are analyzed,and the principle of the participation of electrofusedmagnesiumhigh energy-carrying loads in the elimination of obstructedwind power is studied.Second,a two-layer optimization model is suggested,with the objective function being the largest amount of wind power consumed and the lowest possible cost of system operation.In the upper model,the high energy-carrying load regulates the blocked wind power,and in the lower model,the second-order cone approximation algorithm is used to solve the optimizationmodelwithwind power uncertainty,so that a two-layer optimizationmodel that takes into account the regulation of the high energy-carrying load of the electrofused magnesium and the uncertainty of the wind power is established.Finally,the model is solved using Gurobi,and the results of the simulation demonstrate that the suggested model may successfully lower wind abandonment,lower system operation costs,increase the accuracy of day-ahead scheduling,and lower the final product error of the thermal electricity unit.
文摘This paper presents a method for solving the attitude control problem of high altitude airship (HAA) with aerodynamic fin and vectored thruster control. The algorithm is based on the synthetic optimization of dynamic performance and energy consumption of airship. Firstly, according to the system overall configuration, the dynamic model of HAA was established and the HAA linearized model of longitudinal plane motion was obtained. Secondly, using the classic PID control theory, the HAA attitude control system was designed. Thirdly, through analyzing the dynamic performance of airship with fin or vectored thruster control, the synthetic performance index function with different weighting functions was determined. By means of optimizing the obtained performance index function, the attitude control of high altitude airship with good dynamic performance and low energy consumption was achieved. Finally, attitude control allocation strategy was designed for the airship station keeping at an altitude of 22 km. The simulation experiment proved the validity of the proposed algorithm.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61274046 and 61474111the National Basic Research Program of China under Grant No 2013AA014202
文摘Optimization of the high power single-lateral-mode double-trench ridge waveguide semiconductor laser based on InGaAsP/InP quantum-well heterostructures with a separate confinement layer is reported. Two different waveguide structures of Fabry-Perot lasers emitting at a wavelength of 1.55 μm are fabricated. The influence of an effective lateral refractive index step on the maximum output power is investigated. A cw single mode output power of 165mW is obtained for a 1-mm-long uncoated laser.
文摘In order to analyze the effects of forward-swept angle and skin ply-orientation on the static and dynamic aeroelastic characteristics, the aeroelastic modeling and calculation for high-aspect-ratio composite wings with different forward-swept angles and skin ply-orientation are performed. This paper presents the results of a design study aiming to optimize wings with typical forward-swept angles and skin ply-orientation in an aeroelastic way by using the genetic/sensitivity-based hybrid algorithm. Under the conditions of satiated multiple constraints including strength, displacements, divergence speeds and flutter speeds, the studies are carried out in a bid to minimize the structural weight of a wing with the lay-up thicknesses of wing components as design variabies. In addition, the effects of the power of spanwise variation function of lay-up thicknesses of skins and iugs on the optimized weights are also analyzed.
文摘With better understanding of the quality and physico-mechanical properties of rocks of dam foundation,and the physico-mechanical properties and structure design of arch dam in association with the foundation excavation of Xiluodu arch dam,the excavation optimization design was proposed for the foundation surface on the basis of feasibility study.Common analysis and numerical analysis results demonstrated the feasibility of using the weakly weathered rocks III1and III2as the foundation surface of super-high arch dam.In view of changes in the geological conditions at the dam foundation along the riverbed direction,the design of extending foundation surface excavation area and using consolidating grouting and optimizing structure of dam bottom was introduced,allowing for harmonization of the arch dam and foundation.Three-dimensional(3D)geomechanics model test and fi nite element analysis results indicated that the dam body and foundation have good overload stability and high bearing capacity.The monitoring data showed that the behaviors of dam and foundation correspond with the designed patterns in the construction period and the initial operation period.