Markowitz Portfolio theory under-estimates the risk associated with the return of a portfolio in case of high dimensional data. El Karoui mathematically proved this in [1] and suggested improved estimators for unbiase...Markowitz Portfolio theory under-estimates the risk associated with the return of a portfolio in case of high dimensional data. El Karoui mathematically proved this in [1] and suggested improved estimators for unbiased estimation of this risk under specific model assumptions. Norm constrained portfolios have recently been studied to keep the effective dimension low. In this paper we consider three sets of high dimensional data, the stock market prices for three countries, namely US, UK and India. We compare the Markowitz efficient frontier to those obtained by unbiasedness corrections and imposing norm-constraints in these real data scenarios. We also study the out-of-sample performance of the different procedures. We find that the 2-norm constrained portfolio has best overall performance.展开更多
Covariance matrix plays an important role in risk management, asset pricing, and portfolio allocation. Covariance matrix estimation becomes challenging when the dimensionality is comparable or much larger than the sam...Covariance matrix plays an important role in risk management, asset pricing, and portfolio allocation. Covariance matrix estimation becomes challenging when the dimensionality is comparable or much larger than the sample size. A widely used approach for reducing dimensionality is based on multi-factor models. Although it has been well studied and quite successful in many applications, the quality of the estimated covariance matrix is often degraded due to a nontrivial amount of missing data in the factor matrix for both technical and cost reasons. Since the factor matrix is only approximately low rank or even has full rank, existing matrix completion algorithms are not applicable. We consider a new matrix completion paradigm using the factor models directly and apply the alternating direction method of multipliers for the recovery. Numerical experiments show that the nuclear-norm matrix completion approaches are not suitable but our proposed models and algorithms are promising.展开更多
The estimation of high dimensional covariance matrices is an interesting and important research topic for many empirical time series problems such as asset allocation. To solve this dimension dilemma, a factor structu...The estimation of high dimensional covariance matrices is an interesting and important research topic for many empirical time series problems such as asset allocation. To solve this dimension dilemma, a factor structure has often been taken into account. This paper proposes a dynamic factor structure whose factor loadings are generated in reproducing kernel Hilbert space(RKHS), to capture the dynamic feature of the covariance matrix. A simulation study is carried out to demonstrate its performance. Four different conditional variance models are considered for checking the robustness of our method and solving the conditional heteroscedasticity in the empirical study. By exploring the performance among eight introduced model candidates and the market baseline, the empirical study from 2001 to 2017 shows that portfolio allocation based on this dynamic factor structure can significantly reduce the variance, i.e., the risk, of portfolio and thus outperform the market baseline and the ones based on the traditional factor model.展开更多
文摘Markowitz Portfolio theory under-estimates the risk associated with the return of a portfolio in case of high dimensional data. El Karoui mathematically proved this in [1] and suggested improved estimators for unbiased estimation of this risk under specific model assumptions. Norm constrained portfolios have recently been studied to keep the effective dimension low. In this paper we consider three sets of high dimensional data, the stock market prices for three countries, namely US, UK and India. We compare the Markowitz efficient frontier to those obtained by unbiasedness corrections and imposing norm-constraints in these real data scenarios. We also study the out-of-sample performance of the different procedures. We find that the 2-norm constrained portfolio has best overall performance.
基金supported by National Natural Science Foundation of China(Grant Nos.10971122,11101274 and 11322109)Scientific and Technological Projects of Shandong Province(Grant No.2009GG10001012)Excellent Young Scientist Foundation of Shandong Province(Grant No.BS2012SF025)
文摘Covariance matrix plays an important role in risk management, asset pricing, and portfolio allocation. Covariance matrix estimation becomes challenging when the dimensionality is comparable or much larger than the sample size. A widely used approach for reducing dimensionality is based on multi-factor models. Although it has been well studied and quite successful in many applications, the quality of the estimated covariance matrix is often degraded due to a nontrivial amount of missing data in the factor matrix for both technical and cost reasons. Since the factor matrix is only approximately low rank or even has full rank, existing matrix completion algorithms are not applicable. We consider a new matrix completion paradigm using the factor models directly and apply the alternating direction method of multipliers for the recovery. Numerical experiments show that the nuclear-norm matrix completion approaches are not suitable but our proposed models and algorithms are promising.
基金supported by National Natural Science Foundation of China under Grant No.11771447。
文摘The estimation of high dimensional covariance matrices is an interesting and important research topic for many empirical time series problems such as asset allocation. To solve this dimension dilemma, a factor structure has often been taken into account. This paper proposes a dynamic factor structure whose factor loadings are generated in reproducing kernel Hilbert space(RKHS), to capture the dynamic feature of the covariance matrix. A simulation study is carried out to demonstrate its performance. Four different conditional variance models are considered for checking the robustness of our method and solving the conditional heteroscedasticity in the empirical study. By exploring the performance among eight introduced model candidates and the market baseline, the empirical study from 2001 to 2017 shows that portfolio allocation based on this dynamic factor structure can significantly reduce the variance, i.e., the risk, of portfolio and thus outperform the market baseline and the ones based on the traditional factor model.