The estimation of covariance matrices is very important in many fields, such as statistics. In real applications, data are frequently influenced by high dimensions and noise. However, most relevant studies are based o...The estimation of covariance matrices is very important in many fields, such as statistics. In real applications, data are frequently influenced by high dimensions and noise. However, most relevant studies are based on complete data. This paper studies the optimal estimation of high-dimensional covariance matrices based on missing and noisy sample under the norm. First, the model with sub-Gaussian additive noise is presented. The generalized sample covariance is then modified to define a hard thresholding estimator , and the minimax upper bound is derived. After that, the minimax lower bound is derived, and it is concluded that the estimator presented in this article is rate-optimal. Finally, numerical simulation analysis is performed. The result shows that for missing samples with sub-Gaussian noise, if the true covariance matrix is sparse, the hard thresholding estimator outperforms the traditional estimate method.展开更多
The structure and working principle of a self-deigned high pressure electronic pneumatic pressure reducing valve (EPPRV) with slide pilot are introduced.The resistance value formulas and the relationship between the r...The structure and working principle of a self-deigned high pressure electronic pneumatic pressure reducing valve (EPPRV) with slide pilot are introduced.The resistance value formulas and the relationship between the resistance and pressure of three typical pneumatic resistances are obtained.Then,the method of static characteristics analysis only considering pneumatic resistances is proposed,the resistance network from gas supply to load is built up,and the mathematical model is derived from the flow rate formulas and flow conservation equations,with the compressibility of high pressure gas and temperature drop during the expansion considered in the model.Finally,the pilot spool displacement of 1.5 mm at an output pressure of 15MPa and the enlarging operating stroke of the pilot spool are taken as optimization targets,and the optimization is carried out based on genetic algorithm and the model mentioned above.The results show that the static characteristics of the EPPRV are significantly improved.The idea of static characteristics analysis and optimization based on pneumatic resistance network is valuable for the design of pneumatic components or system.展开更多
Scanning ion conductance microscopy(SICM) is an emerging non-destructive surface topography characterization apparatus with nanoscale resolution. However, the low regulating frequency of probe in most existing modul...Scanning ion conductance microscopy(SICM) is an emerging non-destructive surface topography characterization apparatus with nanoscale resolution. However, the low regulating frequency of probe in most existing modulated current based SICM systems increases the system noise, and has difficulty in imaging sample surface with steep height changes. In order to enable SICM to have the capability of imaging surfaces with steep height changes, a novel probe that can be used in the modulated current based bopping mode is designed. The design relies on two piezoelectric ceramics with different travels to separate position adjustment and probe frequency regulation in the Z direction. To fiarther improve the resonant frequency of the probe, the material and the key dimensions for each component of the probe are optimized based on the multi-objective optimization method and the finite element analysis. The optimal design has a resonant frequency of above 10 kHz. To validate the rationality of the designed probe, microstructured grating samples are imaged using the homebuilt modulated current based SICM system. The experimental results indicate that the designed high frequency probe can effectively reduce the spike noise by 26% in the average number of spike noise. The proposed design provides a feasible solution for improving the imaging quality of the existing SICM systems which normally use ordinary probes with relatively low regulating frequency.展开更多
Wax pattern fabrication in the investment casting of hollow turbine blades directly determines the dimension accuracy of subsequent casting,and therefore significantly affects the quality of final product.In this work...Wax pattern fabrication in the investment casting of hollow turbine blades directly determines the dimension accuracy of subsequent casting,and therefore significantly affects the quality of final product.In this work,we develop a machine learning-based multi-objective optimization framework for improving dimension accuracy of wax pattern by optimizing its process parameters.We consider two optimization objectives on the dimension of wax pattern,i.e.,the surface warpage and core offset.An active learning of Bayesian optimization is employed in data sampling to determine process parameters,and a validated numerical model of injection molding is used to compute objective results of dimension under varied process parameters.The collected dataset is then leveraged to train different machine learning models,and it turns out that the Gaussian process regression model performs best in prediction accuracy,which is then used as the surrogate model in the optimization framework.A genetic algorithm is employed to produce a non-dominated Pareto front using the surrogate model in searching,followed by an entropy weight method to select the most optimal solution from the Pareto front.The optimized set of process parameters is then compared to empirical parameters obtained from previous trial-and-error experiments,and it turns out that the maximum and average warpage results of the optimized solution decrease 26.0%and 20.2%,and the maximum and average errors of wall thickness compared to standard part decrease from 0.22 mm and 0.0517 mm using empirical parameters to 0.10 mm and 0.0356 mm using optimized parameters,respectively.This framework is demonstrated capable of addressing the challenge of dimension control arising in the wax pattern production,and it can be reliably deployed in varied types of turbine blades to significantly reduce the manufacturing cost of turbine blades.展开更多
Large high clearance self-propelled sprayers were widely used in field plant protection due to their high-efficiency operation capabilities.Influenced by the characteristics of field operations such as high power,heav...Large high clearance self-propelled sprayers were widely used in field plant protection due to their high-efficiency operation capabilities.Influenced by the characteristics of field operations such as high power,heavy weight,high ground clearance,and fast operation speed,the comprehensive requirements for the ride comfort,handling stability and road friendliness of the sprayer were increasingly strong.At the present stage,the chassis structure of the high clearance selfpropelled sprayer that attaches great importance to the improvement of comprehensive performance still has the problems of severe bumps,weak handling performance and serious road damage in complex field environments.Therefore,this paper proposes an optimization design method for hydro-pneumatic suspension system of a high clearance self-propelled sprayer based on the improved MOPSO(Multi-Objective Particle Swarm Optimization)algorithm,covering the entire process of configuration design,parameter intelligent optimization,and system verification of the high clearance self-propelled sprayer chassis.Specifically,chassis structure of the hydro-pneumatic suspension suitable for the high clearance self-propelled sprayer was designed,and a design method combining the improved MOPSO algorithm based on time-varying fusion strategy and adaptive update with the parameter optimization of hydro-pneumatic suspension based on this algorithm was proposed,and finally the software simulation and bench performance verification were carried out.The results show that the optimized hydropneumatic suspension has excellent vibration reduction effect,and the body acceleration,suspension dynamic deflection and tire deflection were increased by 16.5%,9.9%and 0.9%respectively,compared with those before optimization.The comprehensive performance of the hydro-pneumatic suspension designed in this study is better than that of the traditional suspension.展开更多
The application of new soft magnetic materials in permanent magnet motor can effectively reduce the loss of motor and improve the efficiency of motor. Taguchi method is a local multivariable and multi-objective optimi...The application of new soft magnetic materials in permanent magnet motor can effectively reduce the loss of motor and improve the efficiency of motor. Taguchi method is a local multivariable and multi-objective optimization method widely used in various engineering problems, which can effectively improve the efficiency of engineering optimization. In this paper, based on a 25 kW, 1700 r/min three-phase permanent magnet motor, the relevant motor model is established in the finite element simulation software, and the relevant simulation analysis is carried out. Combined with Taguchi method optimization, the local optimal structure scheme is obtained. Through optimization, the motor can maintain high efficiency, reduce the cogging torque of the motor by 53.45%, reduce the torque ripple by 36.79%, and increase the torque generated by the permanent magnet per unit mass by 21.42%. Through this optimization, the overall performance of the motor has been significantly improved. The research content of this paper verifies the feasibility of the application of Taguchi method in the optimization of new soft magnetic material motor, provides a new idea for the optimization design of new soft magnetic material motor, and also provides a certain reference for the local multi-objective optimization of the electromagnetic structure of other similar motors.展开更多
为求解高维优化问题,提出基于反向学习和衰减因子的灰狼优化算法(grey wolf algorithm based on opposition learning and reduction factor,ORGWO).设计一种灰狼反向学习模型,模型考虑问题搜索边界信息和种群历史搜索信息,初始种群阶...为求解高维优化问题,提出基于反向学习和衰减因子的灰狼优化算法(grey wolf algorithm based on opposition learning and reduction factor,ORGWO).设计一种灰狼反向学习模型,模型考虑问题搜索边界信息和种群历史搜索信息,初始种群阶段增加反向学习,增强种群多样性.根据算法各个阶段不同特征引入衰减因子,平衡全局和局部勘探能力.选取8个高维函数和23个不同特征的优化函数对算法性能进行测试,进一步使用收敛性分析,寻优成功率,CPU时间,Wilcoxon秩和检验来评估改进算法,实验结果表明,ORGWO算法在求解高维问题上具有较好的精度,鲁棒性和更快的收敛速度.展开更多
In this paper, a bionic optimization algorithm based dimension reduction method named Ant Colony Optimization -Selection (ACO-S) is proposed for high-dimensional datasets. Because microarray datasets comprise tens o...In this paper, a bionic optimization algorithm based dimension reduction method named Ant Colony Optimization -Selection (ACO-S) is proposed for high-dimensional datasets. Because microarray datasets comprise tens of thousands of features (genes), they are usually used to test the dimension reduction techniques. ACO-S consists of two stages in which two well-known ACO algorithms, namely ant system and ant colony system, are utilized to seek for genes, respectively. In the first stage, a modified ant system is used to filter the nonsignificant genes from high-dimensional space, and a number of promising genes are reserved in the next step. In the second stage, an improved ant colony system is applied to gene selection. In order to enhance the search ability of ACOs, we propose a method for calculating priori available heuristic information and design a fuzzy logic controller to dynamically adjust the number of ants in ant colony system. Furthermore, we devise another fuzzy logic controller to tune the parameter (q0) in ant colony system. We evaluate the performance of ACO-S on five microarray datasets, which have dimensions varying from 7129 to 12000. We also compare the performance of ACO-S with the results obtained from four existing well-known bionic optimization algorithms. The comparison results show that ACO-S has a notable ability to" generate a gene subset with the smallest size and salient features while yielding high classification accuracy. The comparative results generated by ACO-S adopting different classifiers are also given. The proposed method is shown to be a promising and effective tool for mining high-dimension data and mobile robot navigation.展开更多
针对目前在混合现实(MR)环境中高效率建立高质量三维(3D)模型的需求,基于神经辐射场算法(NeRF)的三维重建技术,提出了一种基于Laplacian算子的数据集优化算法。首先,围绕某线切割设备录制了一段1 min 51 s的视频,并采取等距提取视频帧...针对目前在混合现实(MR)环境中高效率建立高质量三维(3D)模型的需求,基于神经辐射场算法(NeRF)的三维重建技术,提出了一种基于Laplacian算子的数据集优化算法。首先,围绕某线切割设备录制了一段1 min 51 s的视频,并采取等距提取视频帧的方式,获取了训练数据集;然后,使用Laplacian算子对数据集进行了优化,同时保留了原始数据集作为对比,使用了基于NeRF算法的重建方式与传统的基于COLMAP的稠密点云重建方式,分别对两组数据集进行了三维重建;最后,在重建精度与重建速度方面,对不同重建方式、不同重建数据集的重建结果进行了比较。研究结果表明:COLMAP稠密点云重建耗时是基于NeRF重建耗时的9.98倍,而相较于COLMAP稠密点云重建,使用NeRF重建方式的模型表面缺陷较少;此外,使用Laplacian算子优化的数据集的NeRF重建在峰值信噪比(PSNR)和结构相似性(SSIM)指标上分别提升了2.43%、0.72%,有利于提升重建模型的质量。研究结果支持混合现实技术在制造业数字化转型中的应用,可为其提供有益的参考。展开更多
文摘The estimation of covariance matrices is very important in many fields, such as statistics. In real applications, data are frequently influenced by high dimensions and noise. However, most relevant studies are based on complete data. This paper studies the optimal estimation of high-dimensional covariance matrices based on missing and noisy sample under the norm. First, the model with sub-Gaussian additive noise is presented. The generalized sample covariance is then modified to define a hard thresholding estimator , and the minimax upper bound is derived. After that, the minimax lower bound is derived, and it is concluded that the estimator presented in this article is rate-optimal. Finally, numerical simulation analysis is performed. The result shows that for missing samples with sub-Gaussian noise, if the true covariance matrix is sparse, the hard thresholding estimator outperforms the traditional estimate method.
基金Project(50575202) supported by the National Natural Science Foundation of China
文摘The structure and working principle of a self-deigned high pressure electronic pneumatic pressure reducing valve (EPPRV) with slide pilot are introduced.The resistance value formulas and the relationship between the resistance and pressure of three typical pneumatic resistances are obtained.Then,the method of static characteristics analysis only considering pneumatic resistances is proposed,the resistance network from gas supply to load is built up,and the mathematical model is derived from the flow rate formulas and flow conservation equations,with the compressibility of high pressure gas and temperature drop during the expansion considered in the model.Finally,the pilot spool displacement of 1.5 mm at an output pressure of 15MPa and the enlarging operating stroke of the pilot spool are taken as optimization targets,and the optimization is carried out based on genetic algorithm and the model mentioned above.The results show that the static characteristics of the EPPRV are significantly improved.The idea of static characteristics analysis and optimization based on pneumatic resistance network is valuable for the design of pneumatic components or system.
基金Supported by National Natural Science Foundation of China(Grant No.51375363)
文摘Scanning ion conductance microscopy(SICM) is an emerging non-destructive surface topography characterization apparatus with nanoscale resolution. However, the low regulating frequency of probe in most existing modulated current based SICM systems increases the system noise, and has difficulty in imaging sample surface with steep height changes. In order to enable SICM to have the capability of imaging surfaces with steep height changes, a novel probe that can be used in the modulated current based bopping mode is designed. The design relies on two piezoelectric ceramics with different travels to separate position adjustment and probe frequency regulation in the Z direction. To fiarther improve the resonant frequency of the probe, the material and the key dimensions for each component of the probe are optimized based on the multi-objective optimization method and the finite element analysis. The optimal design has a resonant frequency of above 10 kHz. To validate the rationality of the designed probe, microstructured grating samples are imaged using the homebuilt modulated current based SICM system. The experimental results indicate that the designed high frequency probe can effectively reduce the spike noise by 26% in the average number of spike noise. The proposed design provides a feasible solution for improving the imaging quality of the existing SICM systems which normally use ordinary probes with relatively low regulating frequency.
基金funded by the National Key Research and Development Program of China(Grant No.2019YFA0705302)the National Science and Technology Major Project“Aeroengine and Gas Turbine”of China(Grant No.2017-VII-0008-0102).
文摘Wax pattern fabrication in the investment casting of hollow turbine blades directly determines the dimension accuracy of subsequent casting,and therefore significantly affects the quality of final product.In this work,we develop a machine learning-based multi-objective optimization framework for improving dimension accuracy of wax pattern by optimizing its process parameters.We consider two optimization objectives on the dimension of wax pattern,i.e.,the surface warpage and core offset.An active learning of Bayesian optimization is employed in data sampling to determine process parameters,and a validated numerical model of injection molding is used to compute objective results of dimension under varied process parameters.The collected dataset is then leveraged to train different machine learning models,and it turns out that the Gaussian process regression model performs best in prediction accuracy,which is then used as the surrogate model in the optimization framework.A genetic algorithm is employed to produce a non-dominated Pareto front using the surrogate model in searching,followed by an entropy weight method to select the most optimal solution from the Pareto front.The optimized set of process parameters is then compared to empirical parameters obtained from previous trial-and-error experiments,and it turns out that the maximum and average warpage results of the optimized solution decrease 26.0%and 20.2%,and the maximum and average errors of wall thickness compared to standard part decrease from 0.22 mm and 0.0517 mm using empirical parameters to 0.10 mm and 0.0356 mm using optimized parameters,respectively.This framework is demonstrated capable of addressing the challenge of dimension control arising in the wax pattern production,and it can be reliably deployed in varied types of turbine blades to significantly reduce the manufacturing cost of turbine blades.
基金financially supported by Major scientific and Technological Innovation Projects of Shan Dong Province(Grant No.2019JZZY010728-01)supported by Bintuan Science and Technology Program(Grant No.2022DB001)Innovative Platform of Intelligent Agricultural Equipment Design and Manufacturing(Grant No.2021XDRHXMPT29).
文摘Large high clearance self-propelled sprayers were widely used in field plant protection due to their high-efficiency operation capabilities.Influenced by the characteristics of field operations such as high power,heavy weight,high ground clearance,and fast operation speed,the comprehensive requirements for the ride comfort,handling stability and road friendliness of the sprayer were increasingly strong.At the present stage,the chassis structure of the high clearance selfpropelled sprayer that attaches great importance to the improvement of comprehensive performance still has the problems of severe bumps,weak handling performance and serious road damage in complex field environments.Therefore,this paper proposes an optimization design method for hydro-pneumatic suspension system of a high clearance self-propelled sprayer based on the improved MOPSO(Multi-Objective Particle Swarm Optimization)algorithm,covering the entire process of configuration design,parameter intelligent optimization,and system verification of the high clearance self-propelled sprayer chassis.Specifically,chassis structure of the hydro-pneumatic suspension suitable for the high clearance self-propelled sprayer was designed,and a design method combining the improved MOPSO algorithm based on time-varying fusion strategy and adaptive update with the parameter optimization of hydro-pneumatic suspension based on this algorithm was proposed,and finally the software simulation and bench performance verification were carried out.The results show that the optimized hydropneumatic suspension has excellent vibration reduction effect,and the body acceleration,suspension dynamic deflection and tire deflection were increased by 16.5%,9.9%and 0.9%respectively,compared with those before optimization.The comprehensive performance of the hydro-pneumatic suspension designed in this study is better than that of the traditional suspension.
文摘The application of new soft magnetic materials in permanent magnet motor can effectively reduce the loss of motor and improve the efficiency of motor. Taguchi method is a local multivariable and multi-objective optimization method widely used in various engineering problems, which can effectively improve the efficiency of engineering optimization. In this paper, based on a 25 kW, 1700 r/min three-phase permanent magnet motor, the relevant motor model is established in the finite element simulation software, and the relevant simulation analysis is carried out. Combined with Taguchi method optimization, the local optimal structure scheme is obtained. Through optimization, the motor can maintain high efficiency, reduce the cogging torque of the motor by 53.45%, reduce the torque ripple by 36.79%, and increase the torque generated by the permanent magnet per unit mass by 21.42%. Through this optimization, the overall performance of the motor has been significantly improved. The research content of this paper verifies the feasibility of the application of Taguchi method in the optimization of new soft magnetic material motor, provides a new idea for the optimization design of new soft magnetic material motor, and also provides a certain reference for the local multi-objective optimization of the electromagnetic structure of other similar motors.
文摘为求解高维优化问题,提出基于反向学习和衰减因子的灰狼优化算法(grey wolf algorithm based on opposition learning and reduction factor,ORGWO).设计一种灰狼反向学习模型,模型考虑问题搜索边界信息和种群历史搜索信息,初始种群阶段增加反向学习,增强种群多样性.根据算法各个阶段不同特征引入衰减因子,平衡全局和局部勘探能力.选取8个高维函数和23个不同特征的优化函数对算法性能进行测试,进一步使用收敛性分析,寻优成功率,CPU时间,Wilcoxon秩和检验来评估改进算法,实验结果表明,ORGWO算法在求解高维问题上具有较好的精度,鲁棒性和更快的收敛速度.
文摘In this paper, a bionic optimization algorithm based dimension reduction method named Ant Colony Optimization -Selection (ACO-S) is proposed for high-dimensional datasets. Because microarray datasets comprise tens of thousands of features (genes), they are usually used to test the dimension reduction techniques. ACO-S consists of two stages in which two well-known ACO algorithms, namely ant system and ant colony system, are utilized to seek for genes, respectively. In the first stage, a modified ant system is used to filter the nonsignificant genes from high-dimensional space, and a number of promising genes are reserved in the next step. In the second stage, an improved ant colony system is applied to gene selection. In order to enhance the search ability of ACOs, we propose a method for calculating priori available heuristic information and design a fuzzy logic controller to dynamically adjust the number of ants in ant colony system. Furthermore, we devise another fuzzy logic controller to tune the parameter (q0) in ant colony system. We evaluate the performance of ACO-S on five microarray datasets, which have dimensions varying from 7129 to 12000. We also compare the performance of ACO-S with the results obtained from four existing well-known bionic optimization algorithms. The comparison results show that ACO-S has a notable ability to" generate a gene subset with the smallest size and salient features while yielding high classification accuracy. The comparative results generated by ACO-S adopting different classifiers are also given. The proposed method is shown to be a promising and effective tool for mining high-dimension data and mobile robot navigation.
文摘针对目前在混合现实(MR)环境中高效率建立高质量三维(3D)模型的需求,基于神经辐射场算法(NeRF)的三维重建技术,提出了一种基于Laplacian算子的数据集优化算法。首先,围绕某线切割设备录制了一段1 min 51 s的视频,并采取等距提取视频帧的方式,获取了训练数据集;然后,使用Laplacian算子对数据集进行了优化,同时保留了原始数据集作为对比,使用了基于NeRF算法的重建方式与传统的基于COLMAP的稠密点云重建方式,分别对两组数据集进行了三维重建;最后,在重建精度与重建速度方面,对不同重建方式、不同重建数据集的重建结果进行了比较。研究结果表明:COLMAP稠密点云重建耗时是基于NeRF重建耗时的9.98倍,而相较于COLMAP稠密点云重建,使用NeRF重建方式的模型表面缺陷较少;此外,使用Laplacian算子优化的数据集的NeRF重建在峰值信噪比(PSNR)和结构相似性(SSIM)指标上分别提升了2.43%、0.72%,有利于提升重建模型的质量。研究结果支持混合现实技术在制造业数字化转型中的应用,可为其提供有益的参考。